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Abstract

In this paper, we present the hierarchical variable dependencies that were obtained from raw data with the use of two machine
learning techniques on an ecological data set. The data set contains features of field margins and the corresponding number
of spider species inhabiting them. This data set was used before by domain experts to construct a fuzzy qualitative model
with hierarchical variable dependencies, which we use for comparison with our results. One of the machine learning methods
constructs a hierarchical structure similar to the one in the experts’ model, while revealing some additional interesting relations of
environmental features with respect to the number of spider species. The other method constructs a different hierarchy from the
one proposed by the experts, which, according to our classification performance experiments, might be even more appropriate.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

Ecological domains are complex with interdepen-
ent variables and hidden relations that are difficult

o explain. These characteristics indicate that ecology
xperts might benefit from the use of machine learn-

ng methods. Machine learning can be used to confirm
ypotheses or to discover new relations, thus gaining

nsight into vast amounts of data. However, the most
emanding parts, evaluation and explanation, have to
e done by experts.
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E-mail address: martin.znidarsic@ijs.si (M.̌Znidařsič).

In this paper, we present the hierarchical structu
rules and relations that were learned from raw data
the use of two machine learning techniques. Som
formation is given about these techniques and the
they were used to construct hierarchies of varia
from the data. The data set we used contains the
surements of variables that might influence the d
sity of foliage-dwelling spiders in field margins. T
meaning of the variables in this data set is descr
in Section2. This data set was used before by dom
experts(Kampichler et al., 2000)to construct a fuzz
qualitative model of hierarchical variable depend
cies. The model was mainly constructed manually
some use of data analysis techniques.

304-3800/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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Instead, we constructed hierarchical models of this
data set completely automatically in two ways, using
interaction analysis and function decomposition. Ex-
perimental work with both methods was performed
with the Orange(Dem̌sar and Zupan, 2004)data mining
suite. Interaction analysis(Jakulin and Bratko, 2003)
comprises a set of tools for identifying interactions
among the variables in data. Interactions are dependen-
cies between variables that deserve closer investigation.
In prediction tasks we are especially interested in three-
way interactions between two independent variables
(such as mean margin width or the number of small
plants) and the outcome (number of spider species).
There are two types of three-way interactions: the two
variables may be synergistic in the sense that control-
ling for both of them unlocks an otherwise hidden pat-
tern. On the other hand, the two variables may be re-
dundant, if they both provide the same information. The
interaction dendrogram, which summarizes the three-
way interactions found in data, yields a structure similar

to the model that was built by domain experts. It also
provides some clues about which variables are equally
appropriate to be used in the same place of the model
structure, as well as additional clues about variable de-
pendencies (some of which can be due to noise).

The second method we used, function decomposi-
tion, is a member of a larger family of constructive
induction methods, which focus on discovering novel
concepts in data. We employed the hierarchy induction
tool HINT (Zupan et al., 1999). This method is also
able to create new variables and rules to compute their
values, not only the hierarchical structure. However, it
tends to be sensitive to noise in the training data. The
resulting hierarchy did not exactly match the hierarchy
of the experts, but experiments indicate that the con-
structed model is valid with respect to the given data,
and could therefore be interesting to domain special-
ists.

Interaction analysis could be useful for construction
of preliminary models, thus saving experts valuable

Table 1
Variables that characterize the margins

margindensity Margin density (linearm of margins per ha)
meanmarginwidth Mean width of margins
marginwidth Width of the strip
disturbances Number of disturbance events (ploughing, mowing, etc.) per year
herbcover Cover of herbs (%)
herbs Proportion of total plant biomass (%) of herbs (estimated in the field)
legumes Proportion of total plant biomass (%) of legumes (estimated in the field)
grasses Proportion of total plant biomass (%) of grasses (estimated in the field)
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f the seven study areas, whereas all other variables character
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time. It is also possible that both methods could help
identify complex concepts, ones that would be hard to
discover manually. The results suggest that integrating
the approaches of interaction analysis and function de-
composition might be a promising direction for further
work: i.e., one might extract the hierarchy with inter-
action analysis and then use HINT to find the rules in
its internal nodes.

2. Foliage-dwelling spiders dataset

Field margins are grassy strips between arable
fields or meadows. They contain only single shrubs
and trees and they are not cultivated or ploughed. Field
margins support beneficial arthropods, e.g. predators
of crop pests, and can be of potential value to species
of conservational importance.Barthel and Placher
(1996) and Anderlik-Wesinger et al. (1996)studied
foliage-dwelling spider occurrence in field margins
in seven agricultural areas in southern Germany
(seeBarthel and Placher (1996), Fig. 1) by standard
visual inspection in the herbaceous vegetation. They
used between 12 and 17 plots (1× 50 m) in each
area yielding a total of 96 plots and analysed the
influence of margin and landscape characteristics
(see list of variables inTables 1–4) on the species
number of spiders per plot. By applying correlation
and regression analyses they identified margin density,
margin width, percent cover of herbaceous plants
a the
m ese
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Table 2
The following variables are the mean values of the indices by Ellen-
berg(Ellenberg et al., 1992)

light min. exclusively in deep shade
min. exclusively in bright sunlight

temperature max. exclusively in highest regions of European
mountains
max. exclusively on the warmest locations of
central Europe

continentality min. center of distribution in westernmost Europe
max. only in easternmost parts of central Europe

moisture min. exclusively on very dry soils
max. mostly on very wet soils

acidity min. exclusively on acid soils
max. exclusively on calcareous soils

nutrient min. on sites with lowest N concentrations
max. on sites with highest N concentrations

Each plant species has an indicator value for a number of factors like
light, temperature, etc. ranging from 0 [very low] to 9 [very high], for
example “light”: 0—exclusively in deep shadow, 9—exclusively in
open habitats. Mean values calculated by presence/absence of species
without weighting by abundance.

Table 3
Cover (estimated in the field as a vertical projection of the plants
onto the soil surface, thus the sum is>100%)

herb layer Cover of all plants in the herb layer
soil layer Open soil
litter layer Cover of plant litter

Table 4
Cover (estimated in the field) in different heights (sum>100%)

small cover (cm) <25
medcover (cm) 26–50
high cover (cm) 51–100
vhigh cover (cm) >100

spiders (six singletons) (seeKampichler et al. (2000),
Fig. 2). The model is ecologically plausible and
reflects domain knowledge on the biology of spiders
in field-margins obtained in various empirical studies
(e.g.,Gibson et al., 1992; Thomas et al., 1992; Baines
et al., 1998).

A short explanation1 of the variables in the spiders
data set is given inTables 1–4.

3. Interaction analysis

A fundamental goal of data analysis is the identifica-
tion of connections between variables. Connections in-

1 Provided by Gabriele Andersik-Wesinger.
nd the number of mechanical perturbations as
ain factors influencing spider diversity. Using th

ariables,Kampichler et al. (2000)elaborated a fuzz
ule-based model, increasing the predictive powe
nseen field-margins in comparison with the orig
ultiple regression model(Anderlik-Wesinger e
l., 1996) which read speciesnumber = 8.27−
.13 (1/marginwidth) + 0.02 margindensity−
.53 disturbance+ 0.05 herbcover. In the fuzz
odel a rule set relates disturbance (two fuzzy s
nd margin width (three fuzzy sets) to an intermed
ariable called habitat persistence (six singleto
nother rule set relates habitat persistence (six f
ets) and margin density (three fuzzy sets) to ano
ntermediate variable called colonisation poten
eight singletons); finally a third rule set relati
olonisation potential (seven fuzzy sets) and h
over (three fuzzy sets) predicts species numbe
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Fig. 1. The variable proximity matrix illustrates the strongest connections between individual variables: the darker the corresponding box the
higher the mutual information between the variables.

dicate the existence of a pattern which can be identified
by examining the connected variables simultaneously.
If there is no such pattern, there is no need for connect-
ing the variables, and we can safely assume them to
be independent. Such a pattern-based view of connec-
tions subsumes the notions of a correlation as one of

possible patterns, an interaction as the cause of a pat-
tern, or an association as the psychological reaction to
the discovery of a pattern. But how to define the exis-
tence of a ‘pattern’ mathematically? Interaction analy-
sis (Jakulin and Bratko, 2003)is one approach to this
task.
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3.1. Methodology

Let us examine interaction analysis on a simple ex-
ample of two variables,A andB. There are two pos-
sibilities: we can assume that there is a pattern, and
the resulting probabilistic model will take the form
of P(A, B). Alternatively, we can assume the two
variables to be independent, and the model will be
P(A)P(B). Let us examine such a probabilistic model
on an example, by assuming thatA andB are discrete
variables, anda andb are individual values that they
can take. IfA denotes diversity, andB the margin den-
sity, the resulting distribution of the 97 examples can
be shown in a contingency table:

B A

Low diversity
(%)

High diversity
(%)

Total margin
density

High margin density 46 25 71
Low margin density 3 26 29
Total diversity 49 51 100

In the center, the percentages describe the joint prob-
ability mass functionP(A, B), on the rightP(B), and
in the bottomP(A).

If we employ a reliable approach for obtaining all the
probabilistic models, the less restricted modelP(A, B)
can be used as a reference to which we compare the
loss of the restricted modelP(A)P(B). In the above
example, we can see a distinct deviation caused by the
unexpectedly low percentage of low diversity of spider
s we
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entropyH(A, B) the stronger the pattern inP(A, B)
and the more telling the model. However, entropy does
not provide the information about the reducibility of
the model through the assumption of independence. For
that purpose, we can restate Eq.(1) in terms of entropy,
matching the definition of mutual informationI(A; B):

D(P(A, B)||P(A)P(B))

= H(A) + H(B) − H(A, B) = I(A; B) (2)

Fig. 2. The two-way interaction dendrogram summarizes the mutual
information between individual variables. The color hue indicates the
power of the interaction. Strong ones are red (darker) and the weak
ones are green (lighter). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of the
article.)
pecies in areas with low margin density, where
ompareP(low diversity, low margindensity) = 0.03
ith P(low diversity)P(low margindensity) = 0.14
he measure of the pattern in interaction anal

s the loss caused by the assumption of vari
ndependence in the modelP(A)P(B), relative to the
ependence-assuming modelP(A, B). Employing

he device of Kullback–Leibler divergence we c
ompute the ‘distance’ between both models:

(P(A, B)||P(A)P(B)) =
∑

a,b

P(a, b) log2
P(a, b)

P(a)P(b)

(1)

We can express the same in terms of the S
on entropy, for two variables defined asH(A, B) =∑

a,b P(a, b) log2 P(a, b). Entropy measures th
ack of structure inP(A, B), and is similar in mean
ng to variance, uncertainty or disorder. The lower
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If I(A; B) is sufficiently high, we say thatA and B
interact. Mutual information can be seen as a mea-
sure of a two-way interaction between two vari-
ables. The role of mutual information is analogous to
that of the non-parametric measure of correlation or
association.

3.2. Results

3.2.1. Analysis of associations
In association analysis, we are primarily interested

in mutual information between pairs of variables, with-
out regard for any particular dependent variable. The
dependent variable is considered to be equivalent to
other independent variables. The task of association
analysis helps to understand the general structure of
variables in the data, which then helps separate the vari-
ables into groups. In the context of interaction analysis,
the association between two variables is quantified with
mutual information.

For the purpose of this analysis, each numerical
variable was converted into a three-level discrete one.
Each discrete value corresponds to a tercile in the
distribution of the numerical values. Three-valued
discrete variables allow relatively robust maximum
likelihood estimation of probabilities in the resulting
9 groups and the available 97 instances. Fewer levels
would cause a loss in pattern detection, while more
levels would cause unreliable probability estimates.
In this analysis, the outcome was handled in the same
w
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Fig. 2. The dendrogram is effectively an empirical tax-
onomy of the variables, created purely from the data.
We can see three clusters of variables. On the top, there
are mainly the variables that reflect human intervention.
The variables that describe the density of margin veg-
etation are at the bottom. In between there is a large
group of diverse variables that tend to characterize the
composition of the plant community. We can clearly
see that the spider diversity is primarily associated with
the human intervention variables. The clustering is also
meaningful since the interactions are to some extent
transitive.

3.2.2. Analysis of predictors
Sometimes the objective of data analysis is to pre-

dict a particular outcome, in our example it is the num-
ber of spider species in a particular area. The outcome
plays the role of the dependent variable, while other
variables are considered to be independent. For exam-
ple, we are not interested in the mutual information
between the margin density and the orientation of the
field, as this is not within the context of the outcome.
Instead, we are only interested in the mutual informa-
tion between independent variables and the dependent
variable. It is easy to see that the mutual information
also quantifies the reduction in the uncertainty of the
outcome (spider diversity) as allowed by the informa-
tion about the margin density:I(margindensity; diver-
sity) =D(P(diversity| margindensity)|| P (diversity)).
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It is a well-known result that the joint entro

(A, B) is the upper bound for the mutual informat
(A; B). Therefore, we can express mutual inform
ion as a percentage of joint entropy. This percenta

measure of proximity between two variables ac
ll the instances. Without such a normalization,
umber of variable values would influence the mu

nformation, and the complex variables would the
ore appear to be more connected than simple
bles. Such a normalization was originally propo
yRajski (1961), who has also shown that the result
ormed mutual information obeys the triangle ineq

ty and is therefore a metric.
Fig. 1illustrates the resulting variable proximity m

rix, but in itself it is not very clear. A popular approa
o summarizing proximity matrices is hierarchical cl
ering(Struyf et al., 1997), and the result is illustrated
When we are predicting the outcome with two
ependent variables on real data, the information
ided by these two variables might not be truly indep
ent: variable independence is a modelling assump
ut rarely an intrinsic property of the data. For exa
le, the second variable might provide some infor

ion that the first variable already provided about
utcome (consider the relevance of the variables
erature and altitude). Or, the second variable m
ffect the effect of the first variable on the outcom
ay turn out, for example, that the influence of g

overage on the spider diversity is not independe
ean margin width.
One way of quantifying these deviations from in

endence is based on three-way interaction inform
Jakulin and Bratko, 2003; McGill, 1954):

(A; B; C) = I(A, B; C) − I(A; C) − I(B; C)
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Fig. 3. The three-way interaction graph shows which pairs of variables interact with the outcome. The nodes identify individual variables, the
undirected dashed edge indicates a redundancy, and the directed edges correspond to synergies between two variables and the outcome. Nodes
are labeled withI(A; C), the mutual information between the variable and the outcome, while interactions are labeled withI(A, B; C), both
expressed as a percentage of the outcome entropyH(C). TheP-values of the interactions are also shown.

Here,I(A, B; C) is simply the mutual information be-
tweenA andB together on one side, andC on the other
side: I(A, B; C) = H(A, B) + H(C) − H(A, B, C).
This way, interaction information compares the joint
mutual information with the sum of individual mutual
informations. We can also interpretI(A; B; C)
through the following formula: I(A; B; C) =
I(A; B|C) − I(A; B). Hence,I(A; B; C) computes the
change in mutual information betweenA andB if we
control forC, and thereby evaluates the amount ofC’s
influence on the relationship betweenA andB.

The interaction information may be either positive
or negative. If it is distinctly positive, the pair of vari-
ables are opening a pattern that would otherwise not
be detected by only considering individual variables’
information about the outcome. For that reason, we
say that the two variables are in a synergy with respect
to the outcome. On the other hand, two variables
may contribute partly the same information, and this
situation of redundancy could result in duplication
of evidence. For prediction, we can improve the
performance by accounting for both redundancies
and synergies. This is achieved by allowing for the
dependence between the variables. Exercising the
assumption of variable independence, which is made
in many learning procedures, may result in underfitting
for synergies and in overfitting for redundancies.

The usual practice of three-way interaction analysis
is identifying the pairs of variables that are involved in

the most distinct interactions with the dependent vari-
able. To prepare our data for analysis, we employed
the Fayyad-Irani(Fayyad and Irani, 1993)discretiza-
tion with at least two variable values. The outcome was
also discretized into two values with a split at the me-
dian value. Because we are estimating the three-way
interactions, the number of discrete values per variable
must be lower than in the earlier association analysis,
not to risk unreliable probability estimates.

The resulting analysis inFig. 3shows a single nega-
tive interaction between the herb and legume coverage
and the coverage of grasses. Usually, the two coverages
sum up to approximately 100%, so only one of them
is truly needed: once we know the coverage of grasses,
the information about the herb and legume coverage
eliminates merely 9.62− 9.11 = 0.51% of outcome
(number of spider species) entropy. We can say that
the latter provides negligible evidence once the cover-
age of grasses is known. Recently, a significance test
has been proposed to measure the confidence in the re-
liability of the interaction(Jakulin and Bratko, 2004),
and the results are included in the graph.

The proportion of phanerophytes (taller woody
plants) appears to moderate a number of two-way inter-
actions with the outcome. For example, the proportion
of phanerophytes is not informative on its own (highly
insignificant as a predictor), but controlling for the fre-
quency of grass, it turns to be a significant predictor
of spider diversity. Specifically, it turns out that there
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is much lower spider diversity when there are many
phanerophytes with high grass coverage, in the absence
of undergrowth. These two variables can be seen as pre-
dictors of the undergrowth. One dependence-assuming
approach is to describe the undergrowth with a separate
variable. On the other hand, the covering of grass has a
positive interaction with mean margin width. These two
variables together explain 13.4 + 14.2 + 13.3% of the
outcome (rather than 13.4 + 13.3%). Another promi-
nent positive interaction that was discovered is illus-
trated in more detail inFig. 4. The number of small plant
species appears to be uninformative on its own, but in-
formative in combination with the mean margin width.

Interaction graphs become cluttered when the vari-
ables are many. For that reason, it is again possible
to define proximity between variables, but this time
in the context of the dependent variable. The result-
ing proximity measure is normed interaction informa-
tion, the absolute value of interaction information ex-

Fig. 4. The contour plot depicts the outcome variable (spider diver-
sity) in dependence of two independent ones (number of small plant
species and mean margin width). The influence of the two indepen-
dent variables on the dependent one is highly nonlinear. The number
of small plant species appears to be uninformative on its own, but
informative in combination with the mean margin width. To gen-
erate the nonlinear regression model underlying the contours, we
employed support vector regression with RBF kernels(Chang and
Lin, 2001).

pressed as a percentage of joint entropy:d(A, B) =
|I(A; B; C)|/H(A, B, C).

As before, we summarize the interactions using hier-
archical clustering in a dendrogram that is shown inFig.
5. Looking at the asterisks, it can be seen which vari-
ables are the best predictors (the top part of the dendro-
gram). For example, we can see that certain variables
refer to the same aspects of the data: the influence of
disturbances is also reflected in the presence or absence

Fig. 5. The three-way interaction dendrogram shows both the two-
way interactions between an independent and the dependent variable
(denoted by asterisks), and the three-way interactions between two
independent variables and the dependent one (denoted by the prox-
imity in the dendrogram). The color hue indicates the type of the
interaction. (For interpretation of the references to color in this fig-
ure legend, the reader is referred to the web version of the article.)
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of branched plants. Therefore, it is unclear whether it
is the frequency of disturbances that affects the spiders
directly or it is the indirect influence of disturbances
through the number of branched plants.

4. Constructive induction

Using the tool HINT(Zupan et al., 1999), we per-
formed data-driven constructive induction, construc-
tion of new concepts from the given variables in the
spiders data set. HINT achieves this by function decom-
position, a method that decomposes a complex function
into a hierarchy of simpler ones.

4.1. Function decomposition and HINT

We will make a short explanation of function de-
composition on a simple artificial example. Let us say,
that we are interested in the rate of pollination of apple-
trees and we decide to measure the pollination rate (P)
along with some other factors that might be important
in the pollination process. In this case let these factors
be the temperature (T), the rainfall (R) and the distance
to the nearest beehive (B). The rainfall and tempera-
ture can take values low and high, whereas the other
two variables can take values low, medium and high.

The goal of our analysis would be to find out how the
measured factors influence the target concept. In this
respect, we can view the measurements as variables
and the goal of the analysis as finding the functionF
so thatP = F (T, R, B).

Suppose we have some measurements that are given
in Table 5. Notice that these measurements do not to-
tally specify our function.

Table 5
FunctionF

T R B P

low low low medium
low low medium medium
low high low low
low high high high
low high medium medium
high low low high
high low high high
high high low medium
high high medium medium

The function decomposition tries to build new
concepts based on possible partitions of the vari-
ables. In this case, there are three non-trivial par-
titions and three corresponding decompositions of
the variables:P = F (T, H(R, B)),P = F (H(T, R), B)
and P = F (R, H(T, B)). The concepts are built in a
way that one value of a concept stands for every set
of combinations of the values of its variables where
such set produces the same values of the target concept
given also the values of variables outside the concept.
This process is explained in much more detail in the
literature(Zupan et al., 1998).

The decompositions obtained this way are inFig.
6. We can see that the new concept in the second de-
composition has the lowest number of values. Feature
decomposition methods usually select the decomposi-
tion that has concepts with the smallest set of values
or the lowest number of examples in the definition of
the functions. In our case, the second decomposition in
Fig. 6 is the best one regarding both criteria.

If we had more variables in our dataset, the func-
tion decomposition would proceed further and build a
more complex hierarchy, such as the one inFigs. 7–9.
Such a hierarchy of concepts provides an insight into
the relations among the measured variables and can be
used as a first approximation of a rule-based prediction
model. There have been some successful tests of this
approach in the past (e.g.,Zupan et al., 1999, 1998).

4.2. Results
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Fig. 6. The three possible decompositions of the function defined with examples fromTable 5.

tion decomposition method described byZupan et al.
(1998). The variables in the spiders data set are con-
tinuous, but the method works only with categorical
data, so each variable’s values were categorized (dis-
cretized) into three categories using equal frequency

discretization. The resulting hierarchy is shown in
Figs. 7–9.

A comparison with the model built by the experts
(Kampichler et al., 2000)can be made only using the
four variables they used in their model (‘disturbance’,

Fig. 7. The top part of the hierarchy obtained with HINT on the preprocessed spiders data set. The nodes marked with ‘c’ and a number, are
artificial concepts created by the function decomposition method.
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Fig. 8. The left part of the hierarchy obtained with HINT on preprocessed spiders data set. The nodes marked with ‘c’ and a number, are artificial
concepts created by the function decomposition method.

‘margin width’, ‘margin density’ and ‘herb cover’).
The relations of these four variables in the hierarchy
obtained with HINT do not match the relations in the
experts’ model. The methodologies employed are very
different, so we cannot compare the fuzzy model, the
interaction dendrogram and the hierarchy from HINT.
Therefore, we cannot explain why there are differences
in their structure.

Model consisting of so many attributes also proved
to be too complex to be evaluated or explained by the

experts. The interpretation of constructed concepts can
not be made without a multitude of speculations that
are making it worthless.

4.2.2. Model comparison
Because the structure obtained from the whole data

set did not match the structure presented byKampichler
et al. (2000)and was too complex for the experts to
evaluate, we also applied HINT to the spiders data set
with only four variables present, the ones that were

Fig. 9. The right part of the hierarchy obtained with HINT on preprocessed spiders data set. The nodes marked with ‘c’ and a number, are
artificial concepts created by the function decomposition method.
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used in experts’ model(Kampichler et al., 2000). The
discretization intervals of the values of these variables
were identical to the ones used in the expert’s model.
The only difference was that the interval membership
functions of values were not fuzzy, but crisp. In such
a setting, besides the hierarchy, the functions in the
model and the predictive performance of the model are
interesting to observe and compare.

The hierarchy obtained in this setting is shown in
Fig. 10. The four presented variables are in a different
relation to the one in the hierarchy obtained from the
data set with all the variables present. This can be due
to the changes in data set, different categorization than
in the previous experiment and a much smaller num-
ber of variables. The functions for the Species Number
and both of the artificial concepts are given inTable 6.
Some combinations of variable values never occur in
the rules, because these combinations never occur in
the data set.

There is no straightforward interpretation of the ar-
tificial concepts in the hierarchy available. However,
we can recognize that concept 1 includes informa-
tion on spatial and temporal scales of margin exis-
tence: margin density characterizes margin area avail-
able per unit area of landscape, thus higher density
means higher margin accessibility for colonizers; less
disturbance means larger life-time of a given margin.
High margin accessibility and large margin persistence
should promote accumulation of species and increase
species number. Concept 2 includes only local habi-
t ply
w uc-
t hese
o bi-
t t at-
t by
a r,
2 sed
b s to
l -
i y’
a er I
( tial
r city)
i -
i

-
d with

Table 6
Table functions for Species Number, concept1 and concept2. All
other names represent labels for artificial concepts’ values

MarDen Distur c1

medium low ml
medium high mh
low low ll
low high hhlh
high low hl
high high hhlh

MarWid HerCov c2

low low ll
low medium lm
low high mhlh
medium medium mm
high medium hm
medium low ml
high high hh
medium high mhlh
high low hl

c1 c2 SpecNum

ml ll medium
ml lm fairly high
ml mm fairly high
ml hm fairly high
ml ml medium
ml hh fairly high
ml mhlh medium
ml hl medium
mh ll low
mh lm low
mh mm fairly high
mh ml low
mh hh fairly high
mh mhlh fairly high
mh hl medium
ll ll low
ll lm low
ll mm high
ll hm medium
ll hh medium
ll hl fairly high
hhlh ll fairly high
hhlh lm very low
hhlh mm low
hhlh ml low
hhlh hl low
hl lm high
hl hm high
hl mhlh very high

SpecNum= Species Number, c1 = concept1, c2 = concept2,
MarDen= Margin Density, Distur= Disturbance, MarWid=
Margin Width, HerCov= Herb Cover.
at information: local size of margins and local sup
ith structural complexity (herbs supply more str

ure than grasses). We could roughly translate t
bservations to ‘metacommunity concept’ and ‘ha

at quality concept’. These concepts parallel recen
empts in explaining spatial distributions of animals

hierarchical framework(Mackey and Lindenmaye
001), sometimes called ‘filters’, that must be pas
y species from the regional pool to have acces

ocal communities(Poff, 1997; Schr̈oder and Reinek
ng, 2004). For example, the artificial ‘habitat qualit
nd ‘metacommunity’ concepts correspond to filt
local resources and conditions) and filter II (spa
elationships—isolation, area size, dispersal capa
n the filter cascade proposed bySchr̈oder and Reinek
ng (2004).

In the paper byKampichler et al. (2000), the pre
ictive performance of the models was measured
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Fig. 10. The hierarchy obtained with HINT on spiders data set of four variables.

mean absolute error (MAE). This measure was evalu-
ated on test data, which was not used for the tuning of
fuzzy sets in the model. For a model based on multi-
ple regression, the reported MAE was 3.17 species and
1.38 species for the fuzzy rule-based model.

We tested our crisp rule-based model on the dis-
cretized spiders data. The same data split into train and
test set was used as inKampichler et al. (2000)(87
study plots, 9 test plots) and the results are an average
of 100 test runs. At each run, HINT constructed a model
from the training data and the model was tested on the
test data set. Because the goal variable is categorical in
this data set, the result had to be ‘decategorized’, sim-
ilarly as the result was ‘defuzzified’ when the fuzzy
model was used(Kampichler et al., 2000). The proce-
dure of ‘decategorization’ is very simple, each interval
is represented by its mean value. As this approach is
very rough, the results are expected to be somewhat
worse. They also cannot be directly compared to the re-
sults in the paper by Kampichler et al., since the model
was not fuzzy.

HINT reached a MAE of 2.56, a good result that in-
dicates that our model certainly is valid and is not triv-
ial. However, it would be interesting to know whether
the fuzzy model is so much better because of the dif-
ferent structure and functions, or because of the fuzzy
approach. To answer this question, a crisp model was
built, based on the structure and functions (rules) from
the original fuzzy model from the paper byKampichler
et al. (2000). This model was compared to the HINT’s
m , so
n ould
b ’s
m
2 .28,

worse than the result of the crisp model with hierarchy
and functions from HINT.

To further improve the automatically constructed
model, we employed another machine learning tech-
nique. The HINT’s model from the whole data set was
revised with a data-driven model revision technique
that tries to make changes in the model that would solve
the model’s misclassifications of data from a given
data set. The method tries to make smallest possible
changes and is limited only to changes in the rules of
functions in hierarchy. A description of the data-driven
revision is described in more detail in the literature
(Žnidařsič and Bohanec, 2004). The method proposed
a single change in the original model, the change of
rule in the function of SpecNum from< ll, ll, low >

to < ll, ll, medium>. This change indeed is benefi-
cial, but the effect is insignificant, the resulting MAE
of the revised model is 2.47. This is currently the limit
we reached on this data set with completely automatic
methods of rule-based model construction.

It seems that the fuzzy approach is the main advan-
tage of the expert’s fuzzy model. Also, fine tuning of
the shapes of fuzzy sets had a major impact on the re-
sult of fuzzy expert’s model(Kampichler et al., 2000).
The authors claim that an overfitted fuzzy model even
had a MAE of over 5. The crisp version of the model
does not have the advantage of tuning, that is a rea-
son why the results of the crisp models are somewhat
worse. This also puts the result of HINT’s model into a
different perspective. Its hierarchy and functions might
b y the
e tter
t rfor-
m rized
i

odel made from all the data items (study + test)
either model was tuned or fuzzy and the results c
e directly compared. The resulting MAE of HINT
odel (hierarchy inFig. 10, functions inTable 6) was
.49. The result of the crisp expert’s model was 3
e even more appropriate than the ones obtained b
xperts, since the crisp HINT’s model performed be
han the crisp experts’ model. The experimental pe
ance measurements in terms of MAE are summa

n Table 7.
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Table 7
Spider species number prediction MAE of the models in experiments

Model MAE

Multiple regression 3.17
Experts’ fuzzy 1.38
HINT’s 2.56
HINT’s final 2.49
HINT’s final + revision 2.47
Experts’ final crisp 3.28

The last three results correspond to the final models, they were
learned and tested on all available examples.

5. Discussion

Two machine learning methods that discover inter-
connections and hierarchical relations were presented
in the paper, interaction analysis and constructive
induction. Both were applied to a data set from an
ecological domain, the data set that describes features
of field margins that could influence the diversity
of spider species. The interaction analysis provides
many interesting hypotheses and patterns, whereas
the constructive induction is able to build a complete
rule-based model of the target concept, ready to be
used for prediction.

We have demonstrated several aspects of interac-
tion analysis: the analysis of associations between vari-
ables, and the analysis of the interactions between inde-
pendent variables for the purpose of predicting the out-
come. In interaction analysis, the deviation from inde-
pendence quantifies, as assessed through information-
theoretic measures, both the proximity of variables and
the existence of patterns. Interaction dendrograms sum-
marize the variable proximity matrices, and interaction
graphs pinpoint the most distinct interactions which
can be examined through low-dimensional nonlinear
regression models or scatter plots.

The variable structure obtained through the inter-
action dendrogram is very similar to the one designed
by the experts. All the variables chosen by the experts
are highly informative in the dendrogram, and domi-
nate their respective sub-clusters. Namely, a common
f pre-
d e is
t rgin
d and
d ther
a di-
r s.

Interaction analysis is a useful tool for exploratory
data analysis. Its primary purpose is to help structure
the variables in the domain and to guide the examina-
tion of interactions. However, care must be taken when
acquiring probabilistic models from data. It is very easy
to overfit probabilistic models when the data is scarce,
and currently the automated tools for robust estimation
are either inefficient (posterior sampling with MCMC),
or may induce bias (Bayesian priors). This is one of the
areas of our future work.

Using constructive induction with HINT, we have
constructed two complete hierarchical rule-based mod-
els for prediction of the number of spider species. The
hierarchies proposed by HINT were not similar to the
ones in the model made by the experts, but domain ex-
perts were able to find a possible explanation for the
smaller one. However, the large hierarchy of all the at-
tributes proved to be too big and complex to be properly
interpreted.

The model based on the variables that were used
in the model in the referenced literature was evaluated
for predictive power and compared to the models in the
literature. Its performance was slightly worse, however,
the other models had the advantage of using continuous
values or pre-tuned fuzzy sets, so a direct comparison
is not fair.

To examine only the hierarchies and crisp rule-based
functions of the models, we adapted the model of the
experts and rerun the tests. In this setting a direct com-
parison of results could be made. The HINT’s hierar-
c per-
i pro-
p This
i t
a tive
p eful
t hi-
c valid
a pa-
r and
r

ork
t aling,
a ods
f en
s to
s eth-
o ght
eature selection heuristic is to pick the one best
ictor to represent the whole group. The differenc

hat interaction analysis suggests first merging ma
ensity and disturbances, rather than margin width
isturbances. The second difference is that two o
ttributes could be considered for inclusion: slope
ection and proportion of herbs in the total biomas
hies and functions gained a better result in this ex
ment, indicating that they might be even more ap
riate than the ones in the model of the experts.

s another confirmation of the claim byKampichler e
l. (2000), that fuzzy models have a good predic
ower. But it also indicates, that HINT can be a us

ool for environmental modelling, since the hierarc
al rule-based models it constructs from data, are
nd even have a better predictive power then com
able crisp models with manually made hierarchy
ules.

There are some interesting areas for further w
hat appeared during our research. The most appe
ccording to our results, would be to develop meth

or fuzzy or probabilistic rule learning for the giv
tructure of variables. It would also be interesting
ee the results of using some variable selection m
ds prior to constructive induction. This way we mi
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eliminate some noise and improve performance, while
at the same time obtain a simpler full hierarchy that
would probably be easier to interpret.
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Lavrǎc, N., Gamberger, D., Blockeel, H., Todorovski, L. (Eds.),
Proceedings of the Seventh European Conference on Princi-
ples and Practice of Knowledge Discovery in Databases (PKDD
2003), pp. 229–240.

Jakulin, A., Bratko, I., 2004. Testing the significance of attribute
interactions. In: Greiner, R., Schuurmans, D. (Eds.), Proceed-
ings of the 21st International Conference on Machine Learning
(ICML-2004), pp. 409–416.

Kampichler, C., Barthel, J., Wieland, R., 2000. Species density of
foliage-dwelling spiders in field margins: a simple fuzzy rule-
based model. Ecol. Model. 129, 87–99.

Mackey, B.G., Lindenmayer, D.B., 2001. Towards a hierarchical
framework for modelling the spatial distributions of animals. J.
Biogeogr. 28, 1147–1166.

McGill, W.J., 1954. Multivariate information transmission. Psy-
chometrika 19 (2), 97–116.

Poff, N.L., 1997. Landscape filters and species traits: towards mech-
anistic understanding and prediction in stream ecology. J. North
Am. Benthol. Soc. 16, 391–409.

Rajski, C., 1961. A metric space of discrete probability distributions.
Informat. Contr. 4, 373–377.

Schr̈oder, B., Reineking, B., 2004. Modellierung der Art-Habitat-
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