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Abstract

Field margins are grassy strips or banks between arable fields or meadows that are not cultivated or ploughed and
contain only single shrubs or trees. They not only support beneficial arthropods, e.g. predators of crop pests, but can
also be of potential value to species of concern, making them a critical target for conservation of biodiversity in
agricultural landscapes. Most ecological data and most knowledge of ecological relationships are imprecise, uncertain
or ambiguous. An overemphasis on the precision of mathematical models, thus, does not necessarily translate into a
greater representation of reality. In contrast, fuzzy expert systems permit the representation and processing of ‘soft’
ecological knowledge in terms of natural language. This is done by sets of IF–THEN rules that relate the variables
(expressed in the form of fuzzy sets such as ‘rather cold’, ‘comparably few species’, etc.) among each other. Data on
96 field margins in southern Germany and their foliage-dwelling spider assemblages, which had been collected from
May to September 1994, were used for fuzzy modelling of the effects of margin width, margin density, frequency of
mechanical disturbance and vegetation–architectural complexity on species density of spiders. Habitat factors were
ordered according to their hierarchical effectiveness: margin width and disturbance determine habitat persistence,
habitat persistence and margin density determine colonisation potential, and colonisation potential and herbaceous-
plant cover determine species density. Forty-five rules are necessary to relate these factors. The predictive power of
the fuzzy model was surprisingly high. The mean average error between predicted and observed number of species for
test data, which was not used for model development, was less than 1.4 species (observed values ranged between 3
and 25). A multiple-regression model showed a mean average error of 3.17 species. We conclude that fuzzy models
are suitable for representing the soft knowledge of field-margin/spider-assemblage relationships. The model permits
time- and manpower-saving validation on larger scales by qualitative rather than quantitative data collection and by
the inclusion of remote sensing data. We believe that fuzzy models could provide a valuable means for formulating
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measures necessary for conservation of biodiversity in agricultural landscapes. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

During the last decades modern farming meth-
ods have led to a considerable loss of uncultivated
areas, e.g. permanent fallows, field margins and
hedgerows, in the agricultural landscapes of Eu-
rope (Kaule, 1991). Many species of agricultural
weeds and the arthropod fauna associated with
them are now rare and restricted to field edges.
Recently, the importance of field margins as
wildlife habitats, as refuge areas and for pest
control has increasingly attracted the attention of
ecologists (Morris and Webb, 1987; Frei and
Manhart, 1992; Boatman, 1994; Feber et al.,
1995, 1996). Field margins are grassy strips or
banks between arable fields or meadows. Nor-
mally, they are not cultivated or ploughed and
contain only single shrubs or trees. Field margins
not only support beneficial arthropods, e.g. preda-
tors of crop pests, but can also be of potential
value to species of nature-conservational impor-
tance, making them a critical target for conserva-
tion of biodiversity in agricultural landscapes
(Baines et al., 1998).

In the course of ongoing research activities of
the FAM Munich Research Network on Agroe-
cosystems, Barthel and Plachter (1996) and An-
derlik-Wesinger et al. (1996) investigated seven
agricultural areas in southern Bavaria (Germany).
They studied the influence of habitat and land-
scape characteristics on the occurrence of foliage-
dwelling spiders in 96 field margins by visual
inspection of standardised plots of 1×50 m. By
means of correlation and regression analyses, they
found that margin density (= length of field mar-
gins per area), margin width, percent cover of
herbaceous plants and the number of mechanical
treatments (e.g. mowing) were the factors that
most distinctively influenced the species number
of spiders. For example, species number exhibited
a weak, but significant correlation with margin
density (Barthel and Plachter 1996, Fig. 2). The

relationship between species number and width of
the field margins, in contrast, was distinctively
non-linear, with species number increasing with
increasing margin width in a range from 1 to 4 m
and remaining constant with further increases in
margin width (Barthel and Plachter 1996, Fig. 4).

How could these more or less purely statistical
relationships be translated into a model that takes
the underlying causal relationships into account
and that is able to predict species numbers of
spiders? Although elegant in many respects math-
ematical equations severely limit the type of
knowledge that can be represented since much
ecological knowledge is qualitative and fuzzy
(Rykiel, 1989). In the overwhelming majority of
cases ecologists do not communicate in the form
of systems of differential equations or analytical
models, but they use natural language and quali-
tative reasoning for the description of ecological
relationships. Artificial intelligence provides a
means for processing knowledge that is repre-
sented in natural language, for example rule-based
expert systems (Liebowitz, 1998). In this case,
knowledge is represented by rules that consist of
an IF (antecedent) and a THEN (consequent) part.
For example, we might state the hypothetical
ecological rule ‘IF habitat–factor–A–is–high
AND habitat–factor–B–is–intermediate (an-
tecedents) THEN species–number–is–low (conse-
quent)’. Another particularly useful instrument
for processing vague expert knowledge and uncer-
tain or imprecise data is the fuzzy set theory
developed by Zadeh (1965). Its central idea is that
members of a set may have only partial member-
ship, which consequently may possess all possible
values between 0 (‘is not a member of the set’)
and 1 (‘is a member of the set’). In classical logic
there are only two possibilities: either an object is
member of a set or it is not; thus, the only
possible membership values are 0 and 1. Consider
a hypothetical rule with the antecedent ‘IF field–
margin–is–high’ and assume that a field margin
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is regarded to be high at a value of 5 m and more.
According to classic set theory, for a margin
which is 5.01 m wide, the antecedent is true and
the rule will be activated; for a margin which is
4.99 m wide, however, the antecedent is false (Fig.
1a). Biologically, this does not make much sense.
In fuzzy set theory the set ‘high’ may have the
form which is shown in Fig. 1b: with increasing
margin width, the membership in the set ‘high’
gradually rises from 0 to 1. For example, a field
margin which is 5 m wide belongs to ‘high’ with
the membership value 0.5. Briefly, the closer the
membership of an element is to 1, the more it
belongs to the set; the closer the membership of
an element is to 0, the less it belongs to the set.

Thus, wherever we have been forced to draw
artificially sharp distinctions in ecology, we can
now draw more realistic boundaries by means of
fuzzy sets. Fuzzy logic is a generalisation of
Boolean logic; it provides means for a number of
operations and can manage truth values between
‘completely true’ and ‘completely false’. The com-
bination of expert systems, fuzzy set and fuzzy
logic to fuzzy rule-based models has proven to be
a promising approach to environmental mod-
elling, for example in water management (Pesti et
al., 1996; Lee et al., 1997), impact assessment (van
der Werf and Zimmer, 1998), population ecology
(Daunicht et al., 1996; Schröder, 1997; Bock and
Salski, 1998) or ecosystem–behaviour analysis
(Uhrmacher et al., 1997). An excellent overview
over the various applications of fuzzy logic can be
found in two special issues of Ecological Mod-
elling (volume 85, issue 1, Fuzzy Logic in Ecolog-
ical Modelling; volume 90, issue 2, Fuzzy
Modelling in Ecology) (Li and Rykiel, 1996; Sal-
ski, 1996).

The aim of this work was to represent the
statistical results of Barthel and Plachter (1996)
and Anderlik-Wesinger et al. (1996) and the eco-
logical knowledge about the relationships between
characteristics of field margins and species num-
ber of foliage-dwelling spiders by a fuzzy rule-
based model and to test its predictive power.

2. Material and methods

2.1. Data origin

The investigations by Barthel and Plachter
(1996) and Anderlik-Wesinger et al. (1996) were
carried out in seven agricultural areas in the same
geographic region, a hilly landscape between the
rivers Isar and Danube in southern Germany (see
Barthel and Plachter (1996), Fig. 1). The number
of 1×50 m field-margin study plots ranged be-
tween 12 and 17 per study area, with the total
number of study plots being 96. Data were col-
lected by standardised visual search in the herba-
ceous vegetation. Each plot was sampled once per
month from May to September 1994. For a more
detailed description of the data collection, see
Barthel and Plachter (1996) and Barthel (1997).

Fig. 1. Example for crisp sets (a) and fuzzy sets (b). Member-
ship of the crisp sets ‘low’ (dotted line) and ‘high’ (unbroken
line) have a sharp upper and lower border, respectively, while
membership of the fuzzy sets ‘low’ (dotted line) and ‘high’
(unbroken line) increase and decrease gradually, respectively
(b).



C. Kampichler et al. / Ecological Modelling 129 (2000) 87–9990

2.2. Model structure

The statistical relationships between field-mar-
gin characteristics and species density of spiders
had to be translated into a framework of ecologi-
cal interpretations. This included:
1. the division of each variable into fuzzy sets

For every factor, the adequate number and
shape of the fuzzy sets had to be chosen.
Although any number and any shape of
fuzzy sets are possible, we tried to keep the
model as simple as possible. We started with
three sets per variable, thus defining a ‘low’,
a ‘medium’ and a ‘high’ range of values. The
shape of the fuzzy sets was chosen to be
triangular or trapezoid, with memberships
of the single fuzzy sets adding to 1 (cf. Fig.
2).

2. the construction of a rule base
The rule base must cover the entire variable
space, meaning that, for any possible combi-
nation of habitat characteristics, a rule must
be provided. (This is a general drawback of
all rule-based systems and can cause consid-
erable difficulties for larger models.) The
structure of the rule base is up to the mod-
eller. For example, if three habitat factors
are included in the model and each variable
is divided into three fuzzy sets, then the
rules can be organised:
(a) in a single rule-node

In this case, all rules are of the form ‘IF

habitat–factor–1–is–(attribute) AND

habitat–factor–2–is–(attribute) and
habitat–factor–3–is–(attribute) THEN

species–number–is–(attribute)’, giving
a total of 33=27 rules.

(b) in two separate rule-nodes
In this case, two variables are com-
bined to an intermediate variable by
rules of the form ‘IF habitat–factor–
1–is–(attribute) AND habitat–factor–
2–is–(attribute) THEN interme-
diate–variable–is–(attribute)’. The in-
termediate variable is then combined
with the third habitat factor with rules
of the form ‘IF intermediate–variable–
is–(attribute) AND habitat–factor–3–

is–(attribute) THEN

species–number–is–(attribute)’. By
structuring the model into two rule-
nodes, the total number of rules can be
kept smaller than with a single node at
32+32=18 rules.

In analogy, for a larger number of input vari-
ables, the number of rules can be kept small by
choosing an optimum model structure.

2.3. Fuzzy control

The main field of application of fuzzy logic is
control; thus, the processing of rules is often
called fuzzy control. Fuzzy control is organised in
three steps: fuzzification, inference and defuzzifi-
cation. For each step a number of methods is
possible (Zimmermann, 1991). Here, only the
methods used in this paper are presented, follow-
ing the introductory texts by Traeger (1994) and
Bothe (1995).

2.3.1. Fuzzification
Let A and B be fuzzy sets of a variable Var, e.g.

the sets ‘low’ and ‘high’ of the variable ‘distur-
bance’ (Fig. 2). Now determine the membership
functions, mA(x) and mB(x), that determine the
membership of the measurement x in the sets A
and B. For example, in Fig. 2 the measurement x
‘disturbance–events–per–year=2’ would have
the membership values mlow disturbance(x)=0.25 and
mhigh disturbance(x)=0.75.

2.3.2. Inference
Assume a case x, y with the measurement x for

a first input variable Var1input and the measure-
ment y for a second input variable Var2input.
Further, assume a rule of the form ‘IF x=A AND

y=B THEN x, y=C ’ that infers the membership
function of the case x, y in the fuzzy set C of an
output variable Varoutput when x is an element of
fuzzy set A and when y is an element of a fuzzy
set B. Combine the membership values mA(x) and
mB(y) by the operation:

mC(x, y)=min {mA(x); mB(y)} (1)

and get the membership function of x, y in the
fuzzy set C (min is the simplest operator for AND
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Fig. 2. Model structure of the fuzzy rule-based model for the prediction of species number of foliage-dwelling spiders in field
margins. See the text for the explanation.
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in fuzzy control). For example, take rule 1 (Ap-
pendix A) and let the measurements x and y be
‘disturbing–events–per–year=2’ and ‘margin-
width=2 m’. The respective membership values
are mlow disturbance(x)=0.25 and mlow margin width(y)=
0.5 (Fig. 2). Then, the case x, y has the membership
value mhigh habitat persistence(x, y)=min {0.25; 0.5}=
0.25.

The case above also activates the rules 2, 4 and
5 and, by analogy, leads to membership values of
their consequents of mvery high habitat persistence(x)=
min {0.25; 0.5}=0.25, mlow habitat persistence(x)=
min {0.75; 0.5}=0.5 and mmedium habitat persistence(x)
=min {0.75; 0.5}=0.5, respectively.

For a case where several activated rules have the
same consequent, their membership values are
combined by the operation:

mA or B(x, y)=max {mA(x, y); mB(x, y)} (2)

For example, if a case x, y activates rule 8,
leading to mlow colonization potential(x, y)=0.4, and rule
10, leading to mlow colonization potential(x, y)=0.6, then
this operation would yield mlow

colonization potential(x)=max {0.4; 0.6}=0.6.
Each fuzzy-set of the output variable is cut off

at the height of its respective membership-
value. For example, if a case x, y leads
to mlow colonization potential(x)=max {0.4; 0.6}=0.6,
then the fuzzy set ‘low’ is cut off at height 0.6.
Fuzzy-sets that do not appear in the consequents
of the activated rules are cut off at height 0. The
result of the fuzzy inference process is the polygon
that is eventually formed by all cut-off fuzzy-sets
of the output variable.

2.3.3. Defuzzification
The result, in terms of membership values of

fuzzy output sets, is back-translated into a ‘crisp’
output value. The centre of gravity of the polygon
resulting from the inference process is projected
onto the x-axis, and its x-coordinate xcg can be
calculated according to:

xcg=

& xr

x l

x ·f(x) dx& xr

x l

f(x) dx
(3)

where xl and xr are the left and the right end of the
polygon, and f(x) is the border-line function of the
polygon.

The defuzzification is least biased by the shape
of the polygon if the fuzzy sets of the output
variable are chosen as narrowly as possible; thus,
not yielding a contiguous polygon, but several
disjunctive narrow isosceles triangles (Fig. 2) or
even single lines, so-called singletons. Eq. (3) then
simplifies to:

xcg=
%
n

i=1

ximi

%
n

i=1

mi

(4)

where n is the number of narrow triangles (or
singletons) of the output variable, xi is the x-coor-
dinate of the midpoint of the i-th triangle (or of the
i-th singleton), and mi is the membership value of
the i-th triangle (or of the i-th singleton). There
might arise the impression that values in-between
the non-overlapping singletons do not exist. The
following example, however, shows that by com-
puting the centre of gravity of the singletons and
projecting it onto the x-axis the crisp model output
may take any possible value: if a case x activates
rules 43, 44 and 45 and yields the fuzzy output
mfairly high species number(x)=0.5, mhigh species number

(x)=0.5 and mvery high species number(x)=0.25, then
the crisp model output for the variable ‘species
number’ would be (14.5�0.5+18�0.5+21.5�0.25)/
(0.5+0.5+0.25)=17.3.

As pointed out above, the shape of the fuzzy sets
may be arbitrarily chosen (as long as ecologically
meaningful). Since singletons are not suitable as
input variables, the intermediate variables ‘habitat
persistence’ and ‘colonisation potential’ are
reshaped from singletons to triangular fuzzy-sets
when used as input variables for the next rule-node
(Fig. 2).

2.4. Model tuning and testing of predicti6e power

The 96 study plots were randomly split into a
development set with 87 plots and a test set with
nine plots. The development set was used for the
tuning of the model. An initial model was run and
the output of the model compared with the de-
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sired output. By slightly altering the shapes (e.g.
by shifting the feet of the triangular or trapezoid
fuzzy-sets to lower or higher values) and
number of the fuzzy sets of a variable
(e.g. by dividing a variable into n+1 instead of n
fuzzy-sets) and/or by altering the rules, a
number of model generations were developed and
the desired output was progressively approxi-
mated.

When the model output eventually fitted the
desired output, the model was tested with the test
set, since the correspondence of predicted with
observed values of unseen cases must be the crite-
rion used for deciding whether there is a generalis-
able relationship between the independent and
dependent variables (=predictive validation sensu
Rykiel (1996)). In case that the model was overfit-
ted, i.e. it was not able to generalise for unseen
cases, the model generations were stepped back-
wards until the model generation was
chosen that yielded the best compromise
between two fundamental, but conflicting
requirements of ecological models: precision (here:
correspondence between model output
and desired output according to the generation
data) and generalisation (here: correspon-
dence between model output and observed
values of unseen cases) (Wissel, 1989). As the
criterion for measuring correspondence, we used
the mean absolute error (MAE), i.e. the
mean absolute difference between prediction
and observation, a deviance measure recom-
mended by Mayer and Butler (1993) for model
validation. We preferred MAE to the often-
used coefficient of determination, R2, since, for a
comparison of models, R2 has to be adjusted for
the respective degrees of freedom (Kvålseth,
1985). Degrees of freedom, however, cannot be
unequivocally determined for a fuzzy model (B.
Schröder, personal communication). The perfor-
mance of the fuzzy rule-based model was com-
pared with the predictive power of a
multiple-regression model, with habitat factors as
the independent and species number as the depen-
dent variable.

Model generation and manipulation was per-
formed with the Fuzzy Tool of MATLAB/
SIMULINK.

3. Results

3.1. Model structure

The statistical analysis by Anderlik-Wesinger et
al. (1996) had shown that four habitat factors had
the strongest impact on the species density of the
foliage-dwelling spider community, namely mar-
gin width, margin density (total length of margins
per hectare), disturbance (number of mechanical
disturbance events per year, such as mowing and
ploughing) and architectural complexity of the
foliage (percent cover of herbaceous plants in the
margin vegetation). Thus, only these factors were
taken into account for the development of the
fuzzy model. The factors were arranged according
to ecological plausibility in order to form a model
structure that minimised the number of rules
necessary.

Species density increased with increasing margin
width, but levelled off at a margin width of ap-
proximately 3–4 m (Anderlik-Wesinger et al.,
1996). We interpreted this observation as a
demonstration of increasing insensitivity against
mechanical disturbances: narrow field margins —
and thus the spider community it accommodated
— may be completely destroyed by even a single
incidental mowing or ploughing event. Wider field
margins had a higher chance that at least a narrow
strip survived mechanical manipulation. Field
margins of 3 m width and more faced nearly no
risk of being erased even by frequent and regular
disturbance. Moreover, Barthel and Plachter
(1996) had observed that farmers were more dis-
posed to mow or plough narrow margins than
wider margins, thus leading to a negative correla-
tion between margin width and disturbance. We
described the relationship between margin width
and disturbance by a set of rules and defined an
intermediate variable, habitat persistence, relevant
for the survival of the spider community (Fig. 2
and Fig. 3a).

Field margins that faced the risk of
being frequently destroyed needed a high rate of
colonising spiders from nearby habitats to
accommodate a high species number. This is war-
ranted only if a sufficient amount of suitable
habitat is provided in the vicinity, characterised by
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Fig. 3. Response surfaces of rule-node 1 relating margin width
and disturbance to habitat persistence (a), rule-node 2 relating
margin density and habitat persistence to colonisation poten-
tial (b) and rule-node 3 relating cover of herbaceous plants
and colonisation potential to species number of foliage-
dwelling spiders in field margins (c)

of herbaceous plants in the vegetation. Even with
an optimum supply of an architecturally complex
foliage, field margins may not harbour a rich
spider community if the colonisation potential is
low. We described the relationships between
colonisation potential and herbaceous-plant
cover by a third set of rules, yielding an estimate
for the species number of spiders (Fig. 2 and Fig.
3c).

3.2. Model tuning and testing

The initial model structure outlined above was
altered successively by modifying the number and
shapes of the different fuzzy sets as well as the
corresponding rules until a maximum correspon-
dence between model prediction and desired out-
put for the 87 cases of the development data was
reached (MAE=2.14). This model, however,
showed a larger error for the test data (MAE=
5.30), demonstrating over-fitting of the develop-
ment data. One step back in the series of model
generations yielded less precision regarding the
modelling of the development data (MAE=2.96),
but a much better predictive power for the test
data (MAE=1.38) (Fig. 4). The model is shown

Fig. 4. Fuzzy rule-based model predictions for the species
number of foliage-dwelling species in field margins (species per
50 m2) plotted against the observed species number. Develop-
ment data (�): n=87; test data (	): n=9.

the margin density in a given area. Margins facing
a negligible extinction risk may harbour large
numbers of species even when the area shows only
small margin density. The habitat persistence/
margin-density relationships were described by a
set of rules, defining another intermediate
variable, colonisation potential (Fig. 2 and Fig.
3b).

Field margins with a high colonisation potential
may differ in their suitability for harbouring large
numbers of foliage-dwelling species by the percent
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in Fig. 2, the complete set of 45 rules necessary
for the chosen model structure is presented in
Appendix A. Fig. 3 shows the response surfaces of
the final model. They illustrate the quantitative
relationships between input and output variables
for each rule node. The non-linear response of
habitat persistence to an increase in margin width
and a decrease in disturbance is clearly visible
(Fig. 3a). Margin density and cover of herbaceous
plants responded in a more linear way to increases
in margin density and habitat persistence (Fig.
3b), and colonisation potential and cover of
herbaceous plants (Fig. 3c), respectively. Fig. 3b
and c illustrate the assumed compensatory effects
of the input variables (for example, high margin
density can compensate for low habitat persis-
tence and vice versa). They also illustrate the
assumption that one of the input variables
exerts a stronger influence on the output variable
than another (for example, high colonisation po-
tential completely compensates for low cover of
herbaceous plants, whereas high cover of
herbaceous plants has only a low compensative
power).

To achieve linearity, margin width was sub-
jected to a reciprocal transformation prior to
calculating the multiple regression (Anderlik-
Wesinger et al., 1996). The resulting regression
model was species–number=8.27−2.13(1/mar-
gin–width)+0.02 margin–density−1.53 distur-
bance+0.05 herb–cover. All factors were
statistically significant (PB0.001) except 1/mar-
gin–width (P=0.14). The regression was slightly
more precise than the fuzzy model (MAE=2.73
for development data), but the MAE for the test
data (3.17) was 130% higher than the MAE of the
fuzzy model.

4. Discussion

4.1. Plausibility of model structure

The negative effect of mechanical disturbances
on species numbers of spiders has been shown
repeatedly: Baines et al. (1998) reported that cut-
ting of field-margins reduced both abundance and
species richness; Kajak (1971) and Barthel (1997)

(p. 88f) demonstrated a similar effect on the spi-
der community of meadows. The sensitivity to
destruction of the vegetation has also been shown
for a number of individual foliage-dwelling spe-
cies (Schaefer, 1978; Oxford, 1993). Since margin
width has a considerable influence on species
numbers of plants and animals (Molthan, 1990;
Kaule, 1991) and since margin width and the
frequency of mechanical disturbance in the
study areas were significantly negatively corre-
lated (Barthel and Plachter, 1996), the relation-
ships described by rule-node 1 appear to be
plausible.

Spiders have pronounced dispersal abilities and
exhibit a high potential for colonising newly es-
tablished habitats. For example, Thomas et al.
(1992) reported rapid colonisation of newly sown
grass strips from adjacent field margins; Asselin
(1988) observed considerable immigration into
margins that had been adversely affected by agri-
cultural-management activities. According to
metapopulation theory, we assume the colonisa-
tion rate to be distance-dependent (Hanski 1998)
and relate it to margin density, which character-
ises both the distance and size of other popula-
tions. Also, Baines et al. (1998) described rapid
colonisation of new margins, but species numbers
remained poorer than in old margins throughout
a 5-year experiment. Their observation supports
the model-structure assumption that margin den-
sity can compensate for low habitat persistence to
only a certain degree (Fig. 3b).

Foliage-dwelling spiders need a complex vegeta-
tion structure for satisfying their various foraging
and reproduction (particularly supply of web and
cocoon sites) demands. Grasses alone do not sup-
ply sufficient architectural complexity; thus, the
richness of the spider community depends, in
particular, on the diversity of the vegetation and
on the presence of herbaceous plants (Gibson et
al., 1992). Baines et al. (1998) attribute the benefi-
cial effect of sowing a wild grass and forb mixture
on spiders (as compared with natural regenera-
tion) to the dominance of robust, branching spe-
cies. Also, Anderlik-Wesinger et al. (1996) found
a moderate, but highly significant correlation be-
tween the number of herb species and the species
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density of spiders (r=0.47, PB0.001). Tuning
the model led to a very narrow fuzzy set ‘low’ of
the variable cover–of–herbs, suggesting that al-
ready a cover of \15% supplied the community
with sufficient spatial structure. Only very high
herbaceous-plant cover (\70%) provided even
better conditions. However, if cover–of–herbs
was given too much weight in the rules relating it
to colonisation–potential, this led to a consider-
able under- or overestimation of species density at
low or high herbaceous-plant cover, respectively.
The combined effects of disturbance, margin
width and margin density, thus, were only slightly
modulated by herbaceous-plant cover, illustrating
a hierarchical influence of habitat factors.

4.2. Predicti6e power of the fuzzy model

The correspondence between prediction and ob-
servation for the test data is surprisingly good; the
MAE of 1.38 is far better than was expected
beforehand. Significant deviations from the pre-
dicted values, however, may be observed in the
left upper corner of the scatter-plot of prediction
versus observation (Fig. 4): some field margins
that were expected to harbour only low numbers
of species actually showed moderate to consider-
able species density. An underestimation of spe-
cies numbers, in contrast, was rarely observed.
We interpret this as a consequence of the data-
collection method: mechanical disturbance by
agricultural management measures could not be
directly observed, but had to be identified after-
wards by interpreting its consequences. Therefore,
different types of treatment, e.g. mowing, cutting,
ploughing or trampling, could not be discrimi-
nated and their intensity could not be estimated
(Barthel and Plachter, 1996). The classification of
different treatments into a single habitat variable,
disturbance, hindered a closer differentiation of
their impact on species number of spiders. Proba-
bly, a certain number of margins were exposed to
low-intensity mechanical disturbance. The respec-
tive local spider assemblages were thus affected
only to a minor extent, leading to the observed
deviations from the model predictions. No modifi-
cation of the model structure could correct for
this problem.

4.3. Ad6antage of the fuzzy model

The majority of ecological knowledge is fuzzy.
At first sight, uncertainty, imprecision and ambi-
guity might be considered removable artefacts
that can be eliminated by increasing our knowl-
edge. In reality, however, they are inevitable or
inherent parts of natural systems. Overemphasised
precision of models, thus, does not always trans-
late into greater representation of reality (McBrat-
ney and Odeh, 1997). For example, how
meaningful are the decimal places in the multiple
regression model of spider species density given
above? Fuzzy models do not pretend to offer an
unrealistic degree of precision, but they can han-
dle knowledge in the form in which it is normally
communicated among ecologists, in natural lan-
guage. This is a major advantage since ecologists,
until recently, had no effective technology for
using this knowledge in a meaningful way (Rykiel,
1989). By using natural language the data-collect-
ing researcher himself (field or laboratory ecolo-
gist) is enabled to process his knowledge without
being forced to translate it into mathematical
formalisms (or to pass it on to a mathematically
skilled modeller). The basic principles of fuzzy
control are comparably easy to grasp and easy to
apply. Easy-to-use tools for fuzzy modelling are
available (cf. the URL http://www.cs.cmu.edu/
Groups/AI/html/faqs/ai/fuzzy/part1/faq.html).

The non-linearities of ecological relationships
are easily preserved in rule-based models. For
example, for a widespread standard modelling
approach, multiple regression, data must be lin-
earized prior to calculation. This potentially
causes difficulties in interpreting the resulting
model when independent variables appear in root-
transformed, logarithmic and/or reciprocal form,
especially at high data dimensionality. By choos-
ing an adequate number of fuzzy sets for each
variable and a set of simple IF–THEN-rules, any
non-linear relationship (e.g. smooth gradients,
sharp discontinuities) known (or believed) to exist
between two independent and a dependent vari-
able can be represented (Fig. 3a). This characteris-
tic of fuzzy models together with the reduced risk
of overfitting — a least-square regression model
by definition is fitted as tightly as possible to the
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available data — make the approach suitable for
predictive purposes. The fuzzy model on species
density of foliage-dwelling spiders has an amaz-
ingly high predictive power; by processing infor-
mation on only four habitat characteristics
(margin width, margin density, disturbance, herb
cover) predicted species density deviated, on aver-
age, less than 1.4 species from the observed value,
a considerably better result than achieved by the
linear regression model.

The fuzzy model also offers an advantage for
further model validation. Since the model does
not depend on crisp input data, future data collec-
tion may be carried out in a time-saving qualita-
tive manner. Instead of precise metric
measurements of the habitat variables, a fuzzy
estimation is sufficient (e.g. ‘margin–width=
rather narrow’, ‘herb–cover=somewhere be-
tween 20 and 40%’), because fuzzy logic provides
a number of features (e.g. modifiers, fuzzy num-
bers) for relating qualitative data of that form to
the fuzzy sets of the model (Traeger, 1994; Bothe,
1995). Also, data collected by remote sensing
(margin width, margin density) could be used for
further model validation, thus, reducing expendi-
ture in time and man-power even more and allow-
ing for testing the model’s generalisation potential
for entire landscapes. If, at smaller or larger geo-
graphic scales, additional factors (e.g. the vicinity
of certain agricultural managing systems; altitude,
climatic conditions) turn out to be effective, the
model can be altered by inserting supplementary
rule-nodes at the proper hierarchical level within
the model structure. We thus believe that a vali-
dated fuzzy model of the species density of fo-
liage-dwelling spiders in field margins could
provide a valuable means for elucidation mea-
sures necessary for conservation of biodiversity in
agricultural landscapes.
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Appendix A

Rules of the fuzzy rule-based model for species
number of foliage-dwelling spiders in field mar-
gins. Read every rule as: IF antecedent–1 AND

antecedent–2 THEN consequent (e.g. rule 1: IF

disturbance–is–low AND margin–width–is–low
THEN habitat–persistence–is–high)

Rule node 1

Margin HabitatDisturbanceRule
width persistence

Low High1 Low
MediumLow Very high2

3 Low High Extremely
high

Low4 LowHigh
Medium5 MediumHigh
High Fairly-highHigh6

Rule node 2

HabitatRule Margin Colonisation
potentialdensitypersistence

Low7 Low Very low
Low8 Medium Low

HighLow Fairly low9
Medium10 Low Low
Medium11 Medium Fairly low

HighMedium Medium12
13 Fairly high Low Low

MediumFairly high Medium14
Fairly high15 High Fairly high
High16 Low Medium

MediumHigh Fairly high17
18 HighHigh High

LowVery high Fairly high19
Very high20 Medium High

21 Very high High Very high
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Extremely Low High22
high
Extremely23 Medium Very high
high
Extremely ExtremelyHigh24
high high

Rule node 3

ColonisationRule Herb cover Species
numberpotential

LowVery low Very low25
Very low26 Medium Very low

High27 LowVery low
LowLow Very low28

Low29 Medium Low
High30 MediumLow
LowMedium Low31

Medium32 Medium Medium
Medium33 High Fairly high

LowFairly high Medium34
Fairly high35 Medium Fairly high
Fairly high36 High High

LowHigh Medium37
Medium38 Fairly highHigh
HighHigh High39
Low40 Fairly highVery high
MediumVery high High41

Very high42 High Very high
LowExtremely Fairly high43

high
Extremely44 Medium High
high

HighExtremely Very high45
high
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