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Abstract

We applied novel modelling techniques (neural networks, tree-based models) to relate total abundance and species number of

Collembola as well as abundances of dominant species to habitat characteristics and compared their predictive power with
simple statistical models (multiple regression, linear regression, land-use-speci®c means). The data used consisted of soil
biological, chemical and physical measurements in soil cores taken at 396 points distributed over a 50 � 50 m sampling grid in
an agricultural landscape in southern Germany. Neural networks appeared to be most e�cient in re¯ecting the nonlinearities of

the habitat±Collembola relationships. The underlying functional relations, however, are hidden within the network connections
and cannot be analyzed easily. Model trees Ð next in predictive power to neural networks Ð are much more transparent and
give an explicit picture of the functional relationships. Both modelling approaches perform signi®cantly better than traditional

statistical models and decrease the mean absolute error between prediction and observation by about 16±38%. Total carbon
content and measurements highly correlated with it (e.g. total nitrogen content, microbial biomass and respiration) were the
most important factors in¯uencing the Collembolan community. This is in broad agreement with existing knowledge. Apparent

limitations to predicting Collembolan abundance and species number by habitat quality alone are discussed. # 2000 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Collembola are by far the most abundant insects in
soil and attain high densities of up to several 100,000
individuals mÿ2. They can exert a signi®cant in¯uence
on mineralization processes and nutrient cycling via
trophic interactions with decomposer microorganisms
(Verhoef and Brussaard, 1990; Lussenhop, 1992). Soil
zoologists have been trying to discern the factors gov-
erning the distribution of Collembola in various spatial

scales, spanning from biogeographic to local and
microhabital scales (Hopkin 1997, p. 174).
Characteristically, these analyses are performed by var-
ious ordination techniques. The sampling sites are rep-
resented by points in two-dimensional space, whereby
sites similar in species composition are arranged closer
together than sites that are dissimilar. The resulting
ordination diagram can be interpreted by whatever is
known about the environmental characteristics of the
sampling sites (indirect gradient analysis), or, if en-
vironmental data have been collected, the interpret-
ation is performed in a formal way (Jongman et al.,
1995). Collembolan communities have been analyzed
in agroecosystems (e.g. Dekkers et al., 1994; KovaÂ c
and MiklisovaÂ , 1997) as well as in natural ecosystems
(e.g. Ponge, 1993; Ponge et al., 1993). A number of
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factors have been found to be potentially responsible
for Collembolan distribution patterns and include,
among others, temperature, soil acidity, soil moisture,
as well as characteristics of the leaf±litter layer or of
the fungal community (Hopkin, 1997, p 175). The
degree of explanation of distribution patterns by these
analyses is typically moderate (Klironomos and
Kendrick, 1995). Vague relationships between environ-
mental characteristics and characteristics of the
Collembolan community (abundance, species compo-
sition) are most probably a consequence of the highly
aggregated small-scale distribution patterns of the
Collembola; a fact which, even at macroscopically uni-
form sites, leads to a high sample variance (Butcher et
al., 1971; Ekschmitt, unpubl. PhD thesis, 1993).

Ordination is certainly a suitable instrument for ex-
ploratory analysis and interpretation of relationships
between variables in soil ecological datasets, but it
does not o�er a possibility of creating predictive
models. We think, however, that predictive models are
an important step towards understanding abundance
and distribution patterns of animals. For this purpose,
it is necessary to explicitly relate the values of the
dependent variable (e.g. characteristics of the
Collembola community) to the values of the indepen-
dent variables (e.g. environmental features); the values
of the dependent variables may then be inferred from
datasets of the independent variables. The correspon-
dence of predicted with observed values of the depen-
dent variables must be the criterion used for deciding
whether there is a generalizable relationship between
the independent and dependent variables (=predictive
validation sensu Rykiel, 1997). This is a major task if
large databases with a high dimensionality are to be
analyzed and ecologists are becoming increasingly
aware of the advantage of novel and advanced ma-
chine learning techniques, such as arti®cial neural net-
works or the induction of tree-based models.

Brie¯y, neural networks (NN) consist of a number
of computing units, which are termed cells or nodes
(see Gallant (1993) for an introduction to NNs). In the
most popular type of NN, the backpropagation net-
work, the nodes are typically organized in a layered

structure (Fig. 1): an input layer, whose nodes rep-
resent the independent variables; an intermediate layer
(or more) of so-called hidden nodes; and an output
layer, whose nodes represent the dependent variables.
All nodes are unidirectionally joined and each connec-
tion has a numerical weight. Along these connections,
the input values are propagated through the network.
A NN can be trained by providing it with training pat-
terns, e.g. patterns with known outputs for a given
input. The NN begins with a randomly chosen set of
connection weights, compares the calculated output of
the ®rst training pattern with the desired output and,
by applying the backpropagation algorithm, propagates
the error backwards through the net. In the end of a
backpropagation step, the connection weights are
slightly altered and the output approaches by a small
step the desired output. NNs are universal approxima-
tors since, by providing a su�ciently complex network
iteratively with a large number of training patterns, it
is able to model any di�erentiable relationship
(Warner and Misra, 1996). This is particularly import-
ant for ecological modelling since standard methods of
relating independent and dependent variables, such as
multiple regression, can only insu�ciently cope with
the nonlinearities of ecological systems. Recently, NNs
have successfully been used in ecology, e.g. for the
modelling of trout spawning sites in small rivers (Lek
et al., 1996), the modelling of algal blooms (Recknagel
et al., 1997), or the prediction of water balance factors
in soil (Schaap and Leij, 1998). These studies have
shown that NNs can ®t the complexity and nonlinear-
ity of ecological phenomena to a high degree. On the
other hand, NNs are not transparent, especially when
many independent variables are used, since the re-
lationship between independent and dependent vari-
ables is not explicitly stated anywhere, but represented
in the matrix of connection weights of the network.
Thus, if the actual relationships between variables are
of interest, a trained NN must be analyzed by keeping
one input variable constant and scanning over the
possible values of the others. This is a long-lasting pro-
cess and the limits of feasibility of an analysis of this
kind are easily reached since the number of possible
permutations is mn with n being the number of input
nodes and m being the number of levels of each input
variable (but see Dimoupoulos et al. 1995 for speci®c
algorithms to detect the in¯uences of input variables).

Tree-based models o�er a more transparent means
of analyzing high-dimensional datasets (see Breiman et
al. (1984) for an introduction to tree-based models).
Brie¯y, they are based on the assumption that the re-
lationship between independent and dependent vari-
ables is not constant over the entire range of possible
variable values, but can be approximated in smaller
subdomains. Tree-based models are thus constructed
by splitting the dataset into subsets based on the mini-

Fig. 1. Topology of a sample backpropagation network with three

input nodes, four hidden nodes and two output nodes.
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mization of a variance criterion for the subsets. This
procedure is iteratively repeated for each subset and
results in a tree-like structure where each branch is
de®ned by a certain range of values of the independent
variables. The endpoints of the branches, the leaves,
show average values of the dependent variable or
relate the dependent variable to the independent vari-
ables by multivariate linear models. In an ecological
context, tree-based models were used for the prediction
of algal blooms by Kompare and DzÆ eroski (1995).

In this paper, we present the analysis of a compre-
hensive dataset on Collembola and on soil chemical,
physical and biological variables from the FAM
Research Network on Agroecosystems in southern
Germany. The data provided a unique opportunity to
test the predictive potential of soil habitat features for
selected measurements of the Collembolan community:
(1) we model total abundance of Collembola, species
number of Collembola and abundance of the domi-
nant species of the community by means of neural net-
works and tree-based models; (2) we compare the
predictive power of these models to simpler predictive
models generated by standard statistical methods (uni-
variate linear regression, multiple linear regression,
land-use-speci®c means); and (3) we discuss the limits
of models explaining features of local Collembolan
assemblages in terms of habitat characteristics.

2. Material and methods

2.1. Study site, sampling design and data treatment

The FAM Research Network on Agroecosystems
runs a 153 ha experimental farm in Scheyern, approx.
40 km N of Munich, southern Germany. It is located
at an elevation of 450±490 m above sea level; mean
annual temperature and mean annual precipitation are

7.58C and 833 mm, respectively. In April 1991, one
soil core was taken at each intersection of a 50 � 50 m
mesh-size grid (7.8 cm dia, 5 cm depth) and yielded a
total of 396 cores. The majority of these points were
situated in arable ®elds (n = 302), the remainder in
pastures, meadows and arable ®elds on former hop
®elds. All arable land (except grassland) was uniformly
grown with winter wheat. Microarthropods were
counted and Collembola identi®ed by species (Fromm,
1997). For the measurement of the following environ-
mental factors, cores were taken from the same
sampling points at a distance of approximately 25 cm
from the ®rst cores: microbial biomass, microbial res-
piration, soil moisture, soil acidity, carbon content (Ct)
and nitrogen content (Nt) (Winter, 1998). Soil texture
at the sampling points was determined by Sinowski
(1994) and expressed by the 10logarithm of the median
particle diameter (log mpd). From the 396 cores, only
those that had no missing values for any of these vari-
ables were included in the model development, leaving
a dataset of n = 195 (155 of which to be found in ara-
ble ®elds). Table 1 summarizes the methods and
observed values for the independent variables (=soil
habitat features). All data were drawn from the FAM
data base at the GSF National Research Centre for
Environment and Health in Neuherberg, Germany
(URL: http://www.gsf.de/FAM/adis.html). Each soil
core was also characterized by its location on the ex-
perimental farm (position on the axes of the 50 � 50 m
sampling grid) and by the type of land use (agricul-
tural ®elds, meadows, pastures and agricultural ®elds
on former hop ®elds).

2.2. Data used for modelling

Only data of euedaphic and hemiedaphic
Collembola were included in the analysis; epigeic and
atmobiotic Collembola were not used in this study.

Table 1

Analytical methods and data range of the environmental variables from the Scheyern experimental farm (n= 195)

Variable Method Range

Microbial respiration automatic IRGAa 0.76±10.03 mg CO2 g
ÿ1 soil dry weight hÿ1

Microbial biomass automatic IRGAa 4.97±80.98 mg CO2 g
ÿ1 soil dry weight hÿ1

Soil acidity CaCl2 4.72±7.04 ÿlog[H+]

Soil moisture drying at 1058C 5.1±48.13% soil dry weight

Ct elemental analyzerb 0.96±5.86% soil dry weight

Nt elemental analyzerb 0.079±0.833% soil dry weight

Median particle diameter sievingc, sedimentationd, laser di�ractione 6.3±630 mmf

a After Heinemeyer et al. (1989).
b Oxidization at 10208C in a Carlo Erba NA 1500 and subsequent determination of the gas concentrations of CO2 and N2 by gas chromatog-

raphy and heat conductivimetry.
c After Hartge and Horn (1989).
d After KoÈ hn (1928).
e After Heuer and Leschonski (1985).
f Class limits at 12.5, 20, 28, 40, 50, 63, 100 and 200 mm.
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Species number of euedaphic and hemiedaphic
Collembola Ð throughout this paper simply termed
`species number' Ð ranged from 0 to 10 (median 3)
per core, total abundance of euedaphic and hemie-
daphic Collembola Ð throughout this paper simply
termed `total abundance' Ð ranged from 0 to 169 (me-
dian 10) individuals per core and abundance of the
two dominant species, Onychiurus armatus (40.1% of
total abundance) and Folsomia quadrioculata (17.1%
of total abundance), ranged from 0 to 153 (median 3)
and from 0 to 95 (median 0) individuals per core, re-
spectively. The frequency distribution of abundance
was highly skewed, with very few cores containing
very high numbers of individuals, a familiar pattern
typical for the distribution of soil microarthropods
(e.g. Debauche, 1962). We assume that the outliers
were due to factors other than habitat quality, for
example, aggregation behavior at the microscale or
large numbers of juveniles in a core after hatching
from an egg batch. We thus established a threshold at
the 95% quantile of the abundance data distribution.
The threshold value was assigned to all cores with
abundance values beyond the 95% quantile (45 for
total abundance, 16 for the abundance of F. quadrocu-
lata and 23 for the abundance of O. armatus ). There
were no other data transformations.

The dataset of 195 cores was randomly split into ten
subsets. Subsequently one subset was left aside and the
model was generated with the remaining nine subsets.
The subset left aside was used for testing the model
for its predictive power. Machine learning and stat-
istics have di�erent terminologies. To prevent any
ambiguity, the terms we use are de®ned as follows:

. the values of the soil±habitat variables and the cor-
responding values of the Collembolan community
characteristics at a single sampling point constitute
a pattern;

. the patterns of the subsets used for model develop-
ment (least-squares ®tting in the case of linear re-
gression, backpropagation training in the case of the
neural network, etc.) are termed development pat-
terns;

. the patterns of the subsets used for testing the
models are termed test patterns;

. the soil±habitat characteristics are termed input vari-
ables;

. the community characteristics of the Collembola are
termed output variables.

2.3. Model development

2.3.1. Neural networks
For designing, training and testing the networks, we

used the SNNS Stuttgart Neural Network Simulator

(Zell et al., 1995). Prior to neural network modelling,
all data were projected into the interval [0 1] by apply-
ing the transformation x 0i � �xi ÿ xmin�=�xmax ÿ xmin�,
with xmin being the smallest and xmax being the largest
value of a variable in the development patterns. The
network topology consisted of one output node and
one intermediate layer of hidden nodes, with the num-
ber of hidden nodes equalling the number of input
nodes (ten hidden nodes for models with ten input
variables, three hidden nodes for models with three
input variables, see below). We used backpropagation
learning, currently the most widely used algorithm in
neural-network learning (see Appendix A for a descrip-
tion). The learning parameter r was chosen between
0.1 and 0.35. SNNS allows the change of an error
term of the test patterns to be followed while training
the network with the development patterns. Learning
was stopped when the error of the test set was mini-
mal. The number of learning cycles varied between 5
and 100,000. For every output variable (total abun-
dance, species number, abundance of F. quadrioculata
and of O. armatus ), a separate network was trained.

2.3.2. Tree induction
For the development of tree-based models, we used

the program M5 by Quinlan (1992, 1993). A commer-
cial version of M5, the program Cubist 1.05, can be
downloaded from the URL http://www.rulequest.com.
It can work in three di�erent ways: (1) using only
instance-based learning, (2) using only regression and
(3) using instance-based learning and regression for
tree construction. We used all three possibilities, thus
creating models with instances only (MI), regression
trees (RT) and model trees (MT). A closer description
of the tree-induction approach and the functioning of
the M5 algorithm is presented in Appendix B.

2.3.3. Statistical models
We compared the machine learning models with

three predictive models derived by standard statistics:
multiple linear regression (MR), univariate linear re-
gression (LIN) and land-use-speci®c means (LSM).
For the LIN model, ®rst, the input variable that had
the highest correlation coe�cient with the output vari-
able was determined and, second, the linear regression
between these two variables was calculated. For the
LSM model the average of the speci®c output variable
in the development patterns was determined for four
di�erent types of land use: agricultural ®elds, mea-
dows, pastures and agricultural ®elds on former hop
®elds. The calculated average was used as a predictor
for the test patterns.

For clarity, the models and their abbreviations are
listed as follows:

NN neural network model
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MI M5 model with instances only
RT M5 regression tree
MT M5 model tree
MR multiple linear regression
LIN univariate linear regression
LSM land-use-speci®c mean

All models Ð except LSM (only input variable: land
use type) and LIN (only input variable: variable with
the highest correlation coe�cient with the output vari-
able) Ð were generated with ten input variables: x and
y coordinate of the sampling point, land use type, mi-
crobial biomass, microbial respiration, soil moisture,
pH, Ct, Nt and log mpd.

Assuming that, for the estimation of a function, at
least ®ve data points are necessary, a NN with ten
input variables would roughly require 105 patterns or
more for training in order to cover the entire variable
space. With a restricted number of training patterns, a
parsimonious approach to the design of the NN must
be followed and the number of input variables must be
kept as small as possible. Since several of the input
variables Ð microbial biomass, microbial respiration,
Ct, Nt, soil moisture Ð demonstrate strong corre-
lations among each other with r > 0.95 (Kampichler,
1998a), a second series of models was generated. These
models have only three uncorrelated input variables:

microbial respiration (which turned out to be the most
important variable among the ®ve highly correlated
variables listed above), soil acidity and log mpd. The
same development and test subsets as above were
used. A subscript ®gure will denote the number of
input variables throughout the paper (e.g. NN10 is the
neural network model with ten input variables, MT3 is
the model-tree model with three input variables).

2.4. Comparison of predictive power

In a 10-fold crossvalidation, all models (NN, MT,
RT, MI, MR, LSM, LIN) were generated by use of
the ten subsets of development patterns. These subsets
were identical for each model type. The models were
then applied to the respective subsets of test patterns
and the mean absolute error (MAE) between the
model outputs (=predictions) and the observed values
Ð a deviance measure recommended by Mayer and
Butler (1993) for model validation Ð was calculated
for each test subset. MAEs of each model for each test
subset were tested for normality by means of the null-
klassen test (a test particularly designed for small
samples with n < 20: ZoÈ fel, 1992), for homogeneity of
variances (Bartlett test) and for additivity of e�ects
(Tukey test). Di�erences in predictive power of the
di�erent model types were tested by an ANOVA for

Table 2

Mean absolute errors (MAE) of predictive models for total abundance of hemi- and euedaphic Collembola, for species number of hemi- and eue-

daphic Collembola and for numerical abundance of F. quadrioculata, based on ten selected independent variables (x and y coordinates of

sampling point, land use type, microbial biomass, microbial respiration, soil moisture, pH, Ct, Nt, log mpd) and on three selected independent

variables (microbial respiration, pH, log mpd). F values and signi®cance levels of ANOVAs for dependent samples (6 and 54 degrees of freedom),

computed after 10-fold crossvalidations, are shown. Models sharing lowercase letters are not statistically di�erent at P < 0.05. The relative

decrease of MAE as compared with the model with the weakest predictive power is also shown. NN, neural network; MT, model tree; RT, re-

gression tree; MI, model tree with instances only; MR, multiple linear regression; LIN, simple linear regression; LSM, land-use-speci®c mean (see

text for detailed description of models); �P< 0.05; ��P< 0.01; ���P< 0.001

Number of

input variables

Total abundance Species number Abundance of F. quadrioculata

Model F MAE decrease in

MAE (%)

Model F MAE decrease in

MAE (%)

Model F MAE decrease in

MAE (%)

10 NN 10.47��� 9.02a ÿ19.19 NN 3.00� 1.33a ÿ15.52 NN 8.40��� 1.64a ÿ38.24
MT 9.31a,b ÿ16.55 MT 1.51b ÿ4.41 MT 2.24b ÿ15.48
RT 9.60a,b ÿ13.97 RT 1.51b ÿ4.03 RT 2.26b ÿ14.84
MI 9.83b,c ÿ11.94 MI 1.51b ÿ3.90 MI 2.28b ÿ13.93
MR 10.54c,d ÿ5.58 MR 1.51b ÿ3.89 MR 2.35b,c ÿ11.57
LSM 10.92d ÿ2.11 LSM 1.55b ÿ1.79 LSM 2.54b,c ÿ4.39
LIN 11.16d LIN 1.58b LIN 2.65c

3 NN 7.64��� 9.40a ÿ15.76 NN 2.79� 1.40a ÿ10.92 NN 15.30��� 1.78a ÿ33.00
MT 9.72a ÿ12.92 RT 1.50a,b ÿ4.68 MI 2.17b ÿ18.05
RT 9.80a,b ÿ12.19 LSM 1.51b ÿ3.89 MT 2.24b,c ÿ15.51
MI 10.05a,b ÿ9.97 MI 1.53b ÿ2.60 LSM 2.35b,c ÿ11.57
MR 10.45b,c ÿ6.39 MR 1.57b ÿ0.16 RT 2.35b,c ÿ11.32
LSM 10.92c,d ÿ2.11 MT 1.57b ÿ0.11 MR 2.46c ÿ7.45
LIN 11.16d LIN 1.58b LIN 2.65c
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dependent samples and subsequent Duncan tests.
Di�erences between models with ten and three input
variables within the same model type were tested by t-
tests for dependent samples.

3. Results

3.1. Predictive power of models with ten input variables

Generally, linear regression (LIN10) models had the
weakest predictive power for total abundance, abun-
dance of F. quadrioculata and species number (Table
2). Thus, the relative gain in predictive power of the
other models are expressed as the relative decrease of
MAE compared with LIN10. Land-use-speci®c mean
(LSM10) models performed slightly better and MAE
decreased by about 2±4%. Multiple regression (MR10)
models decreased the modelling error by about 4±
12%. The model types capable of representing non-
linear relationships showed the best predictive power,
with tree-based models (MT10, RT10, MI10) and neural
network (NN10) models having MAEs of about 4±17
and 16±38%, respectively, lower than LIN10.

The gain in predictive power was moderate for total
abundance (Table 2; ten input variables). NN10, MT10

and RT10 models performed similarly well and
decreased MAEs by about 14±19% compared with the
weakest model, LIN10. For species number, only NN10

models showed an increase in predictive power (MAE
decrease of about 15.5%); all other models were stat-
istically not signi®cantly di�erent from the LIN10

models. The best results of NN10 and tree-based
models were achieved for abundance of F. quadriocu-
lata: MT10, RT10 and MI10 models (MAE decrease of
about 14±15.5%) are slightly better than the MR10

models (MAE decrease of about 11.5%), NN10 models
decreased MAE by more than a third (38%).

Abundance of O. armatus resisted any modelling
attempt. It could not be related to any environmental
characteristic and even NN10 models Ð which had
turned out to be the most powerful modelling
approach for total abundance, species number and
abundance of F. quadrioculata Ð yielded predictions
that remained uncorrelated with the observations.
Thus, any further attempts to model abundance of O.
armatus were ceased.

3.2. Predictive power of models with three input
variables

Generally, the reduction of input variables led to a
slight increase in MAE, although some models (e.g.
MR3, MR3, MI3) had lower MAEs than the corre-
sponding models with ten input variables. None of
these changes, however, were statistically signi®cant at
P < 0.05, with only RT3 and NN3 for total abundance
showing a considerable decrease in predictive power
(P = 0.07) (Table 3).

LIN3 models were still least successful in predicting
total abundance, species number and abundance of F.
quadrioculata (Table 2). NN3 models again showed the
best predictive power; their MAEs were about 11±33%
lower than the MAEs of the LIN3 models. Tree-based

Table 3

Increase in mean absolute error (MAE) of predictive models for total abundance of hemi- and euedaphic Collembola, for species number of

hemi- and euedaphic Collembola and for numerical abundance of F. quadrioculata following the reduction of the number of independent vari-

ables from 10 to 3. t values and signi®cance level of t-tests for dependent samples (9 degrees of freedom) are shown

Variable Model MAE t P

ten input variables three input variables

Total abundance RT 9.60 9.80 2.06 0.07

NN 9.02 9.40 2.08 0.07

MT 9.31 9.72 1.22 0.25

MI 9.83 10.05 0.61 0.56

MR 10.54 10.45 0.32 0.76

Species number MT 1.51 1.70 1.78 0.11

NN 1.33 1.40 1.25 0.24

MI 1.51 1.53 0.65 0.53

MR 1.55 1.57 0.55 0.60

RT 1.51 1.50 0.47 0.65

Abundance of F. quadrioculata RT 2.28 2.35 1.76 0.11

MR 2.54 2.46 1.05 0.32

NN 1.64 1.78 0.72 0.49

MI 2.24 2.17 0.59 0.57

MT 2.26 2.24 0.21 0.84
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models appeared to be next best in predictive power:
MT3 for total abundance had a MAE of 13% lower
than LIN3, MI3 for abundance of F. quadrioculata led
to a MAE reduction of 18%.

Again, NN and tree-based models could e�ciently
represent the abundance of F. quadrioculata, but were
less successful in modelling total abundance. For
species number, only NN3 led to at least a moderate
increase in predictive power.

3.3. Relationships between environmental characteristics
and Collembola

NN10 models gave the best predictions, but, for a
complete sensitivity analysis of the network, approxi-
mately 10,000,000 patterns would have been necessary
if each input variable had been divided into only ®ve
input levels (cf. Introduction). Sensitivity analysis of
NN3 models, in contrast, was feasible and yielded re-

Fig. 2. Response surface of a NN3 model for abundance of F. quadrioculata on the FAM experimental farm at Scheyern with input values for

log mpd 6.3 mm (a), 40 mm (b) and 630 mm (c). Endpoints of x- and y-axis are the minimum and maximum values of microbial respiration and

soil acidity in the development pattern set.
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sponse surfaces that could cover the entire variable
space. Fig. 2 illustrates the dependence of F. quadriocu-
lata on microbial respiration and soil acidity at low,
medium and high values of log mpd.

The tree-based models gave an explicit and illustra-
tive picture of the relationship between input and out-
put variables. For total abundance, the MT10 models
yielded trees of the form in Fig. 3a: in all of the ten
crossvalidation sets, microbial respiration was the
input variable determining the main bifurcation of the
tree and this was the reason, why microbial respiration
was included in the models with only three input vari-
ables (cf. Material and Methods). In eight of the ten
crossvalidation sets, the position of the soil cores along

the east±west axis of the farm was responsible for the
second rami®cation. Microbial respiration was also re-
sponsible for the main bifurcations in the MT10 model
trees for species number and abundance of F. quadrio-
culata (Fig. 3b,c). For species number, the position
along the east±west axis of the farm was again import-
ant for further rami®cations of the model trees (six of
ten crossvalidation sets).

For total abundance, all of the ten MT3 models
yielded trees with two bifurcations; the ®rst determined
by microbial respiration and the second by log mpd
(Fig. 3d). For species number, the model trees tended
to be simpler with only one bifurcation, again deter-
mined by microbial respiration. In only two of the ten

Fig. 3. Selected MT10 trees for (a) total abundance of hemi- and euedaphic Collembola, (b) species number of hemi- and euedaphic Collembola

and (c) abundance of F. quadrioculata, as well as selected MT3 trees for (d) total abundance of hemi- and euedaphic Collembola, (e) species num-

ber of hemi- and euedaphic Collembola and (f) abundance of F. quadrioculata on the FAM experimental farm at Scheyern. Mean values of the

output variables for regression models in leaves of the model tree are given in parentheses.
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crossvalidation sets was log mpd responsible for
another rami®cation (Fig. 3e). One half of the ten

MT3 trees for abundance of F. quadrioculata showed
only one bifurcation, one branch with a linear re-

gression including soil acidity and the other branch
with a linear regression including log mpd (Fig. 3f).

The remaining trees had a second bifurcation deter-

mined by soil acidity or log mpd.

In general, missing data of input variables cause dif-
®culties in training NNs, since the missing data must

be substituted by arbitrary values, e.g. by the mean
value of the respective variable. In contrast, the M5 al-

gorithm can easily handle datasets with missing data.
In contrast to NNs, M5 also has no upper limit for

the number of input variables for a given sample size.
Since MTs appeared to be the best models in predic-

tive power next to NNs, we additionally created MTs
using all 396 cores of the sample (see Introduction)

and using all available habitat features as input vari-
ables (see the FAM database at the URL http://

www.gsf.de/FAM/adis.html for details). We again per-
formed a 10-fold crossvalidation. MTs with all avail-

able habitat features as input variables will be
abbreviated MTall.

The main bifurcations of the ten MTall models were
caused by ®eld type (®ve trees), microbial respiration

(two trees), Nt (two trees) and percent cover of herbs
(one tree). This diversity of trees demonstrates a strong

dependence of the individual models on the random
assignment of patterns to the crossvalidation data sub-

sets. Ct, Nt and microbial respiration were closely cor-
related with ®eld type; thus, all trees showed an overall

e�ect of organic matter content on total abundance.
When total abundance was not thresholded at 45 indi-

viduals per core, MTall models become more regular
with all trees showing an identical main bifurcation at

Ct=2.55%. Further rami®cations, however, showed
no regularities.

The MTall models for species number also showed
irregularities: the main bifurcations were caused by the

cover of herbs in arable ®elds (®ve trees), Nt (four
trees) and soil moisture (one tree). The trees were

intensely rami®ed and showed no similarities among
each other.

The MTall models for abundance of F. quadrioculata

were dominated by Nt (nine trees) with a rami®cation
point at 0.20%. In six of ten trees the Nt > 0.20

branch was further rami®ed at soil moisture=37.5%.
Abundance of F. quadrioculata averaged at 13±15

(Nt > 0.20 and soil moisture > 37.5% branch), at 2±9
(Nt > 0.20 and soil moisture R 37.5% branch) and at

1.1±1.2 (Nt R 0.20 branch) individuals per core.

Average MAEs of the MTall models were slightly

higher (10.54 for total abundance, 1.60 for species
number, 2.33 for abundance of F. quadrioculata ) than

the average MAEs of the MT10 models, thus yielding
no increase in predictive power.

4. Discussion

4.1. Predictive power of models

The higher predictive power of NN models and tree-
based models clearly re¯ect the nonlinearities in the re-
lationship between environmental variables and
characteristics of the Collembolan community and
con®rm earlier ®ndings of Kampichler (1998a, b).
Although less successful in predicting abundance and
species numbers, MT and RT models have the appeal-
ing quality of being transparent and providing explicit
information about the quantitative relationships
between the variables. Thus, if prediction is the task,
NNs are the proper tools for achieving that goal; if,
however, the understanding of abundance and diver-
sity patterns is also desired, tree-based models appear
to serve better.

The predictive power of models with three input
variables was slightly weaker than that of models with
ten input variables. Measured against the compu-
tational complexity and requirements, however, predic-
tive power went up considerably with less variables for
NNs and tree-based models.

A striking ®nding is that variables that predicted
abundance for one species (F. quadrioculata ) fairly
well were useless for another (O. armatus ). If species
are indeed that di�erent in their requirements for habi-
tat characteristics, it is unlikely that predictive models
for Collembolan communities can be developed.

4.2. Relationships between environmental characteristics
and Collembola

Abundance and distribution of Collembola depend
on a multivariate array of environmental character-
istics, such as soil structure, soil pH, soil moisture,
crop rotation, tillage and soil microbial characteristics
(e.g. Jagers op Akkerhuis et al., 1988; Dekkers et al.,
1994; Klironomos and Kendrick, 1995). A soil prop-
erty repeatedly addressed as being important for deter-
mining Collembolan numerical abundance or biomass
is organic matter content (Alejnikova, 1965; Ghilarov,
1975; AndreÂ n and LagerloÈ f, 1983; KovaÂ c and
MiklisovaÂ , 1997). Vreeken-Buijs et al. (1998), in con-
trast, could not detect any relationship between
Collembola biomass and soil organic matter when
comparing Dutch forest, agricultural and grassland
soils. They concluded that large di�erences in land use
and soil type caused the absence of any signi®cant cor-
relation with organic matter (and other soil character-
istics, such as pH or N mineralization). At the FAM
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experimental farm at Scheyern, soils vary considerably
at small distances (cf. Table 1). Due to the hilly land-
scape and resulting translocation processes, there are
colluvial silty and clayey soils at the foot of the slopes
and eroded sandy and gravelly soils at the hilltops
(Hantschel et al., 1993). Despite this heterogeneity of
soil types and the variety of land-use systems, soil or-
ganic matter turned out to have a considerable poten-
tial for predicting Collembolan total abundance at the
farm. Indeed, microbial respiration, Ct and Nt were
the variables with the highest predictive potential using
the MT3, MT10 and MTall models. However, among
the highly correlated soil characteristics microbial bio-
mass, microbial respiration, soil moisture, Ct and Nt

(cf. Material and Methods), the latter two were the
variables that could be most highly considered `inde-
pendent' (even disregarding feedback processes in soil).
Carbon content determines the size of the microbial
biomass attainable at a site: the proportion of soil C
within the microbial biomass is remarkably constant
and normally ranges from 2 to 3% (Anderson and
Domsch 1989). Soil organic matter also has a high
water capacity and, thus, can profoundly determine
soil moisture characteristics (Sche�er and
Schachtschabel, 1989).

KovaÂ c and MiklisovaÂ (1997) reported that none of
the abundances of the dominant species in agricultural
®elds in east Slovakia was related to any edaphic fac-
tor, although total abundance of Collembola was cor-
related with the content of organic C, N and P.
Similarly, O. armatus also did not demonstrate a re-
lationship to any of the soil characteristics at the
FAM experimental farm. The abundance of F. quad-
rioculata, in contrast, could be well explained by habi-
tat features. NN modelling was particularly successful
in this case and the MTall models highlighted the
dependence of F. quadrioculata abundance on Nt and
Ð when Nt is low Ð on soil moisture. This led to the
assumption that an apparent lack of statistical re-
lationships between a single species and soil character-
istics is potentially due to the nonlinearity of these
relationhips, which can hardly be detected by standard
linear methods (correlation analysis, PCA), if indeed
there is any real relationship. In the case of O. armatus
Ð a species known to be euryoecious and ubiquitous
Ð any identi®able relationship to certain habitat
characteristics in fact seemed to be absent.

Species number of Collembola was the least predict-
able quantity. This is in accord with the observation
by KovaÂ c and MiklisovaÂ (1997) that average species
richness in arable ®elds at twelve study sites in east
Slovakia was not correlated with edaphic factors. At
the FAM experimental farm, this was most likely due
to the low accuracy of estimating species number by
taking single cores at the sampling points. The pre-
sence of less abundant species in a core is a matter of

chance and, thus, the relationship between soil charac-
teristics and species number is necessarily very weak.
Insofar, it is remarkable that NN models could
decrease the mean absolute error of the prediction by
about 16% (NN10) and 11% (NN3) (Table 2). This
highlights the fact that there actually is a certain re-
lation between soil characteristics and species number,
which, as in the cases of total abundance and abun-
dance of F. quadrioculata, can be better resolved by
nonlinear methods. MT10 and MT3 models suggest
that, again, Ct and Nt as well as the microbial vari-
ables correlated with it exert a major in¯uence,
whereas MTall also points at the importance of the
herb cover in arable ®elds (probably in¯uencing soil
moisture).

4.3. Limits of the models

In an earlier modelling attempt on the dataset from
the Scheyern experimental farm, Kampichler (1998a)
compared the modelling success of neural networks
and multiple regressions and concluded that the NN
models are well able to characterize the potential of a
site to provide a habitat for F. quadrioculata. Since the
actual density is, however, dependent on a variety of
processes acting at di�erent spatial and temporal scales
(for example, microscale aggregation behavior, inter-
speci®c interactions, immigration from adjacent habi-
tats, local abundance of predators, or stochastic
disturbances), it is not surprising that pure habitat
models fail to predict local abundance beyond a cer-
tain point of precision (e.g. for total abundance,
species number and abundance of F. quadroculata ) or
totally (e.g. for abundance of O. armatus ). NN10 and
MT10 models clearly illustrate the fact that processes
acting on a regional scale in¯uence community charac-
teristics of Collembola: the position along the x-axis of
the sampling grid, representing the west±east extension
of the experimental farm for about 1.5 km, was,
besides microbial respiration, the most important fac-
tor in¯uencing total abundance, species number and
abundance of F. quadrioculata (Fig. 3a±c). Raimondi
(1990) suggests that di�erences in local habitat quality
can only be expected to be re¯ected in animal density±
distribution patterns when abundance is very high and
approaches the carrying capacity of the habitat.

All models we compared in this study also su�er
from a common fundamental problem: they assume
causal unidirectionality from `independent' to `depen-
dent' variables, disregarding feedback loops in soil
processes. Microbial biomass not only provides food
for a certain number of grazing organisms, but may
itself respond to grazing by compensatory growth,
thus again altering food supply (Lussenhop, 1992).
Advanced methods, such as backpropagation NNs and
tree-based models, may be better suited to model non-
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linear relationships than conventional statistics, but
even they cannot take into account feedback loops and
dynamic relationships between variables.

Besides this general problem of pure habitat±quality
models, their predictive power also heavily depends on
the characteristics and quality of the data used for
model development and for model validation, since
simulation models cannot be expected to provide
results that are more accurate and precise than the
available data (Rykiel, 1997). First, the data used here
originated from only one point in time (spring 1991).
Possibly, the factors that set a limit for local abun-
dance are e�ective at another time in the year (e.g. the
amount of soil moisture during summer), leading to
only weak relationships between habitat variables and
density of Collembola at the time of sampling. Species
number is probably less a�ected since, in spring, 90%
of all species known from the Scheyern experimental
farm could be recorded (J. Filser, pers. comm.).
Second, at each sampling point, only one single core
was taken, potentially leading to erratic relationships
between soil characteristics and abundance and species
number of Collembola. Moreover, cores for species
extraction and for measuring environmental variables
were taken separately. Third, only the upper 5 cm of
soil were sampled, thus missing an unknown number
of individuals in other horizons and possibly giving
rise to errors in abundance and species number esti-
mates. Filser and Fromm (1995) found that several
euedaphic species known to be present at the Scheyern
experimental farm were not detected by the grid
sampling in April 1991. A sampling depth of 5 cm
may yield reasonable estimates for Collembolan abun-
dance in grasslands at the farm, but not for the eue-
daphic species in arable ®elds (Filser and Fromm,
1995). This may also be an explanation for the model-
ling failure for abundance of O. armatus, which is
known to be an euedaphic species. Fourth, micro¯ora
in the grid sample was characterized only by total bio-
mass and respiration; no further distinction between
certain groups of micro¯ora had been undertaken
(Winter, 1998). Collembola, however, may react di�er-
ently to di�erent microbial variables. Klironomos and
Kendrick (1995), for instance, found total length of
fungal hyphae and diversity of darkly pigmented fungi
to be important variables in¯uencing microarthropod
community structure in a maple-forest soil. In organi-
cally managed agricultural ®elds in Denmark, the
abundance of Collembola showed signi®cant corre-
lations with yeasts and cellulose-degrading fungi (J.A.
Axelsen, pers. comm.).

All these drawbacks of data quality may have poten-
tially veiled the actual relationship between
Collembola and environmental variables. We assume
that this dataset, which is distinctly larger than a typi-
cal soil biological sample, illustrates the limits of habi-

tat models for Collembola. Additional expenditure of
time and manpower Ð if at all feasible Ð could poss-
ibly overcome the data quality drawbacks listed above,
but cannot solve the fundamental problems of: (1) var-
ious ecological processes superimposing the pattern of
habitat quality and of (2) feedback loops prevailing in
functional relationships, both of which hamper the
predictive power of habitat features for the local abun-
dance and species number of Collembola. We have
shown, however, that novel modelling approaches that
are able to re¯ect the nonlinearities of habitat±
Collembola relationships may distinctively improve the
predictive potential of habitat characteristics.
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Appendix A

The following description of the functioning of
backpropagation networks follows the introduction by
Gallant (1993).

The input into a node ui (except for the input nodes)
is a weighted sum S of the outputs from all nodes uj
connected to it:

Si �
X
j

wi,juj �A:1�

where wi,j is the weight assigned to a connection from
node uj to node ui: The node ui computes its output Ð
its activation Ð as a nonlinear and di�erentiable func-
tion f�Si � of the weighted sum of the inputs to that
node. Most commonly Ð and also in this paper Ð
the logistic activation function is used:

ui � f�Si � � 1

1� eÿSi
�A:2�

The backpropagation learning algorithm is a gradi-
ent-descent algorithm.

The backpropagation update rule is

Dwi,j � r diuj �A:3�
with
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di � �Ci ÿ ui �f 0�Si �, �A:4a�
if ui is an output node,

di � �
X

wm,idm�f 0�Si �, �A:4b�

if ui is a hidden node, and

f 0�Si � � ui�1ÿ ui � �A:4c�
where Dwi,j is the change of the connection weight
between uj and ui in a backpropagation step, r a con-
stant learning parameter (termed Z in SNNS), Ci the
teaching output, ui the actual output, f 0�Si � the deriva-
tive of the logistic activation function f �Si � and wm,i

the weight assigned to the connection from ui to um:
In the beginning of the learning process, a small

positive value for r is chosen and small initial weights
are randomly assigned to all connections. Then, the
network is provided with a training pattern, corre-
sponding to the term development pattern used in this
paper. In a forward propagation step, the input is
passed through the network: the weighted sums of
inputs, Si and the activations, ui � f �Si �, are calculated
for all nodes according to Eqs. (A.1) and (A.2).
Subsequently, a backward pass through the network is
performed, starting with the output node, computing
Eqs. (A.3) and (A.4) and, ®nally, leading to the update
of the connection weights:

wi,j�t� 1� � wi,j�t� � Dwi,j �A:5�
with wi,j�t� denoting connection weights at learning
step t and wi,j�t� 1� denoting connection weights at
learning step t+ 1. This procedure is iteratively per-
formed, until a stop criteria is reached, e.g. at mini-
mum error for a set of test patterns.

Appendix B

The following descriptions of tree-based models and
of the M5 algorithm follow the papers by Breiman et
al. (1984) and Quinlan (1992, 1993).

The problem of regression analysis is a problem of
searching for the dependencies between a dependent
variable y and independent variables xi: Tree-struc-
tured regression is based on the assumption that the
functional dependence is not uniform throughout the
entire domain, but can be approximated as such on
smaller subdomains. The tools developed for model
tree induction search for these subdomains automati-
cally and characterize them with regression functions
or constants of the dependent variable. A tree consists
of branches, internal nodes (the branching points) and
leaves (the terminal nodes). Given an example for
which the value of the dependent variable should be
estimated, knowing the values of the independent vari-

ables, the tree is interpreted from the root, i.e. its
uppermost node. In each internal node, a test is per-
formed and, according to its result, the corresponding
left or right subtree is selected until a leaf is reached.
At that point, a value is computed according to the
model in that leaf. This value represents an answer by
the tree and is assigned to the example as the value of
the dependent variable.

The M5 algorithm belongs to the TDIDT (top-down
induction of decision trees) family of algorithms. This
means, it splits the dataset at each node of a tree into
subsets, from which it recursively forms subtrees. The
M5 algorithm maximizes the expected error reduction
when splitting the data into several sets depending on
various potential tests. Let L denote a learning set of
examples. At each step of tree construction, M5 tests
whether the set contains just a few examples or
examples with class values that vary only slightly. In
this case, a leaf is constructed and tree construction is
terminated. Otherwise, the learning set L is split
according to the outcome of a test. A list of potential
tests is evaluated by determining the subset of cases,
Li, associated with each outcome i. Standard deviation
sd�Li � of the target values of the examples in Li is
selected as the measure of error. The expected re-
duction of error as a result of this test can be written
as

Derror � sd�L� ÿ
X
i

jLij
jLj sd�Li � �B:1�

After examining all possible tests, M5 chooses one
that maximizes this expected error reduction.

The M5 program can build trees in three di�erent
ways: (1) using only regression (regression trees), (2)
using only instance-based learning (models with only
instances) and (3) using regression and instance-based
learning (model trees). Regression tries to ®t a linear
model through the remaining examples from the learn-
ing set L. Instance-based learning tries to classify an
example according to the neighbors in close surround-
ings. These close surroundings should be understood
in a multidimensional space, i.e. one dimension for
each of the attributes. Model trees combine both
approaches.
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