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Abstract

All ecological communities experience change over time. One method to quantify temporal 

variation in the patterns of relative abundance of communities is time lag analysis (TLA). 

It uses a distance-based approach to study temporal community dynamics by regressing 

community dissimilarity over increasing time lags (one-unit lags, two-unit lags, three-unit 

lags). Here, we suggest some modifications to the method and revaluate its potential for 

detecting patterns of community change. We apply Hellinger distance based TLA to 

artificial data simulating communities with different levels of directional and stochastic 

dynamics and analyse their effects on the slope and its statistical significance. We conclude 

that statistical significance of the TLA slope (obtained by a Monte Carlo permutation 

procedure) is a valid criterion to discriminate between (i) communities with directional 

change in species composition, regardless whether it is caused by directional abundance 

change of the species or by stochastic change according to a Markov process, and (ii) 

communities that are composed of species with population sizes oscillating around a 

constant mean or communities whose species abundances are governed by a white noise 

process. TLA slopes range between 0.02 and 0.25, depending on the proportions of species 

with different dynamics; higher proportions of species with constant means imply 

shallower slopes; and higher proportions of species with stochastic dynamics or directional 

change imply steeper slopes. These values are broadly in line with TLA slopes from real 

world data. Caution must be exercised when TLA is used for the comparison of community 

time series with different lengths since the slope depends on time series length and tends to 

decrease non-linearly with it.
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Introduction

All ecological communities are subjected to change over time (MacArthur and Wilson 

1967; White et al. 2006; Magurran and Henderson 2010). Long-term datasets of ecological 

communities are the most important source of information on the temporal dynamics of 

species composition and patterns of relative abundance (Magurran et al. 2010). “Long-

term”, however, is relative (Rull and Vegas-Vilarúbia 2011); while some studies analyse 

data collected over an exceptionally long period of time—for example, the Park Grass 

Experiment at Rothamsted, England (Silvertown et al. 2006)—the majority of datasets that 

are regarded as “long-term” by ecologists are comparably short and do not allow for the 

application of standard tools for time series analysis (Cowpertwait and Metcalfe 2009). 

Time lag analysis (TLA) was introduced by Collins et al. (2000) as a method to quantify 

temporal variation in the patterns of relative abundance of communities. It applies a 

distance-based approach and is used to study temporal community dynamics by regressing 

community dissimilarity over increasing time lags (one-unit lags, two-unit lags, three-unit 

lags,...). To prevent the smaller number of data points of larger time lags from biasing the 

result, the time lags are square root transformed. Collins et al. (2000) mention three 

instances that can be distinguished by TLA. (1) When the slope of the regression line of 
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dissimilarity of lag is significant and positive. In this case the community is undergoing 

directional change. (2) When the regression line is significant and negative. This indicates 

a convergent dynamics of the community, i.e., the community returns to an earlier state in 

the time series such as following perturbation or other cyclical behaviour. (3) When there is 

stochastic variation over time. This implies that the slope of the regression line is not 

significantly different from zero. Collins et al. (2000) further state that the slope of the 

regression and the coefficient of determination, R², can be used as a measure of signal 

versus noise. For example, a small but significant positive slope with a small R² would 

indicate slow directional change with high stochastic variation between sample intervals, 

whereas a steeper slope and a large R² would indicate a strong signal of directional change 

and less stochastic variation. Since its publication, TLA has gained popularity, and it has 

been applied to study the temporal dynamics of a variety of communities, for example, 

desert rodents (Thibault et al. 2004), soil microarthropods (Kampichler and Geissen 2005), 

and tide pool fishes (Pfister 2006). 

The stochastic change as outlined above assumes that populations are governed by a white 

noise process, which means that the abundance of a species at a given time is completely 

independent of any previous state. Examples are communities in which species abundances 

oscillate around time-invariant means according to a normal distribution, or communities 

in which the abundance of each species corresponds to random values from a uniform 

distribution at every time step (which in fact also leads to stationary population means 

when the upper and lower limits of the uniform distribution are constant in time). In an 

analysis of 544 natural populations of 123 species, Inchausti and Halley (2002) showed, 

however, that in almost all cases population variability increased with observed timespan, 
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which is not consistent with the assumption of a white noise population process. We 

therefore aimed to evaluate the behaviour of TLA with data based on the most simple 

stochastic model next to a white noise process which assumes that the abundance at any 

point in time is dependent only on its previous value (Williams et al. 2002, p. 188). 

Processes whose future process behaviour is influenced only by the present system state 

are known as Markov processes, and they are widely used for the modelling of biological 

populations (Meyn and Tweedie 1993, p. 5, Williams et al. 2002). We argue that it is highly 

improbable that a first-order Markov process, i.e. a state at time t+1 depends only on the 

state at time t, will move a community back to a position in variable space where it had 

been some time before. Thus, any stochastic change concerning the abundance of the 

species that constitute the community inevitably will veer it away from the original state 

and thus increase any distance measure. The terms “directional” and “stochastic” must be 

used with caution since they suggest that directional community change implies the action 

of an internal or external force that drives it from its original position in variable space. 

According to our reasoning, stochastic variation that can be described by a first-order 

Markov process also leads to “directional” change, for example, by ecological drift 

(Hubbell 2001), which is analogous to genetic drift caused by random mutation (Ricklefs 

2003).

In this paper, we apply TLA to artificial data simulating communities with different levels 

of directional and stochastic dynamics and analyse their effects on the slope and its 

statistical significance. According to our hypothesis, we expect to detect significant 

community change when first-order Markov processes are involved. Finally, we draw 

conclusions on the potential of TLA for the study of real-world community time series. 
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Materials and Methods

Simulation of community time series

We simulated community change with communities having a species richness of 20 and a 

time-series length of 20 and 100 units. They were initialised according to a log-normal 

model of abundance distribution with a mean of log(N)=3 and a standard deviation of 2 

and rounded to the closest integer. We assumed that all species within a community 

behaved independently from the others. We used species with three types of dynamics: 

species that fluctuate around a constant mean (“constant species“), species with stochastic 

dynamics (“stochastic species“), and species with a monotonously increasing or decreasing 

trend (“directional species“). 

Abundance values of the constant species time series were drawn from a normal 

distribution with the initial abundance N0 as the mean and the standard deviation s 

calculated as Nt-1* v where v is a scaling factor ranging from 0.001 to 0.5 thus fixing the 

standard deviation in the range from 0.1% (species with small fluctuations) to 50% 

(species with large fluctuations) of the mean of the preceding time step (Fig.1a). For the 

stochastic species, we used the general model Nt = f(Nt-1, εt) as a starting point where N is 

the population density at time t, εt represents environmental stochasticity, and f is a 

function that relates the density and environmental stochasticity to a population size at time 

t + 1 (Lundberg et al. 2000). We drew the abundance values Nt from a normal distribution 

with mean Nt-1 and standard deviation calculated as above as Nt-1* v with v ranging from 
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0.001 to 0.5 (Fig.1b). Thus the trajectories of the stochastic species through time form first-

order Markov chains since the transition probabilities from Nt-1 to Nt depend only on Nt-1, 

not on how Nt-1 was reached (e.g., by an increase or a decrease from Nt-2  to Nt-1) like in a 

correlated random walk (Meyn and Tweedie 1993; Williams et al. 2002). Stochastic 

species were allowed to go extinct and to re-enter the community. We applied a procedure 

similar to the random walk on a half-line (Meyn and Tweedie 1993) and permitted the 

species trajectory to include negative abundances during data generation. Prior to TLA 

these data were set to zero, i.e. the species were “absent” from the community at the 

corresponding points in time. Time series of the directional species were constructed in the 

same manner as for stochastic species, but for each species the changes were forced to be 

always either positive or negative (Fig.1c). Due to their directional character, species that 

went extinct in the time series could not re-enter the community. The minimum change 

between time steps was set to one. Finally, all of the time series values were rounded to the 

closest integer. For the sake of clarity in this paper we replace the term stochasticity, which 

is introduced into the time series by v, with temporal variability and thus avoid confusing it 

with the terms referring to the three different types of dynamics (constant, stochastic, 

directional).  

We constructed communities that were exclusively composed of constant species 

(const100), stochastic species (stoch100) and directional species (dir100), as well as 

communities that were composed of 25 and 75%, 50 and 50% and 75 and 25% species of 

two given types. For example, community const50stoch50 was composed of 50% constant 

and 50% stochastic species. Among the directional species in a given community, one half 

was assigned an increasing trend, and the other half a decreasing one. For all species in a 
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given community s had the identical value. Thus, we constructed communities with a range 

from very low to very high temporal variability. No attempt was made to simulate 

communities with a converging dynamic, that is, communities that return to a state of one 

of the early sample dates, which should yield a significant negative slope according to 

Collins et al. (2000).

Data transformation

In using Euclidean distance based on the absolute abundances (EDabs) as a distance 

measure, any changes in species abundances in the same direction that do not change 

relative abundance patterns—e.g., all species increase their population size by 10%—will 

lead to increasing dissimilarity over time and yield significant TLA slopes. It is, thus, 

difficult to disentangle the abundance component and the compositional component. We 

assume that in most cases it is desirable to model changes in abundance and changes in 

composition separately, and in these cases distance measures other than EDabs should be 

used. Furthermore, the comparison of temporal trends of communities with different 

numbers of individuals is hampered since higher numerical abundance leads to larger EDabs 

between years and, thus, to steeper TLA slopes. Last but not least, EDabs can cause the 

well-known species-abundance paradox: two sites having no species in common may be 

more similar than two sites sharing species but with different abundances (Legendre and 

Legendre 1998). Based on a preliminary evaluation of different data transformations to 

circumvent the undesired properties of EDabs (Online Resource 1) we applied the Hellinger 

transformation N'ij = √(Nij/∑Nij) where Nij is the population size of species i in year j, and 

ΣNij is the sum of individuals across all species in year j (Legendre and Gallagher 2001). 
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TLA based on Hellinger distance (HD), i.e., Euclidean distance of Hellinger transformed 

data, has the properties of (i) not being sensitive to changes in absolute abundance while 

patterns of relative abundance stay constant, (ii) making assemblages directly comparable 

independent of their species richness, and (iii) being sensitive also to rare species (Online 

Resource 1). Hellinger distance is not mandatory for TLA; depending on the research 

question other distance measures might be preferred for example when abundance effects 

are to be included or when more emphasis is to be given to dominant species (Online 

Resource 1).

Time lag analysis

Community change was replicated 1000 times for each combination of composition (const 

100, stoch100, dir100, const25stoch75, const50stoch50, const75stoch25, const25dir75, 

const50dir50, const75dir25, stoch75dir25, stoch50dir50, stoch75dir25), temporal 

variability (v = 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 

0.5) and time series length (20 and 100), yielding a total of 12*13*2 = 312 000 simulation 

runs. For each simulated community we fitted the linear model HD = a + b*sqrt(lag). For a 

time series of length n there are (n2 – n)/2 possible distance values. The time series of 

length 20 and 100 thus produce 190 (19 values for lag 1, 18 values for lag 2, …, 1 value 

for lag 19) and 4950 distance values, respectively. The inflated number of degrees of 

freedom and the lack of independence between the data points are problematic for the 

determination of the statistical significance of the slope. Following Thibault et al. (2004) 

we applied a Monte Carlo permutation procedure and (i) permuted the order of the year 

columns in the data matrix, (2) calculated the slope b for each permutation, and (3) 
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compared the resulting distribution of slopes with the slope for the original data matrix by 

dividing the number of random slopes greater than the original TLA slope by the number 

of permutations. Doing this for all 312 000 simulated communities, however, would have 

increased the number of calculations to an unfeasible amount. We therefore limited 

significance testing to a 100-fold randomisation of 100 simulated communities for each 

combination of community composition, temporal variability and time series length, which 

still added up to 3 120 000 permutation runs. Slopes were regarded significant when the 

error probability P was equal to or < 0.05. The highest level of significance attainable with 

the applied Monte Carlo permutation procedure was P < 0.01, when all random slopes 

were lower than the original TLA slope. All simulations were performed with the R 

language and environment for statistical computing (R Development Core Team 2010).

Results

Community const100 did not show significant slopes (Figs. 2 and 3) whereas the slopes of 

stoch100 (Figs. 2 and 4) and directional100 (Figs. 3 and 4) were highly significant 

(P < 0.01) at any given level of temporal variability. Even if a small proportion of species 

in the communities containing constant species was stochastic or directional, p decreased 

rapidly and the slopes attained high significance (P < 0.01) in almost all cases (Figs. 2 and 

3). For the mixture of constant and stochastic species with a temporal variability of 

v ≤ 0.05 these slopes were very low (b < 0.02) but still highly significant (P < 0.01) (Fig. 

2a-d). The only exception was community constant75stoch25 (composed of many constant 

species and few stochastic species) whose p varied between 0.25 and 0.45 (Fig. 2c). All 

communities composed of stochastic and directional species had highly significant 

 10

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240



(P < 0.01) slopes (Fig. 4).

Slopes became steeper with increasing temporal variability; at the highest levels of 

variability, however, slopes tended to decrease. This pattern was more pronounced for the 

longer (Fig. 2b, 3b, 4b) than for the shorter time series (Fig. 2a, 3a, 4a). Slopes were 

clearly dependent on time series length and were generally higher in the shorter time 

series, particularly in the communities with higher temporal variability (Figs. 2a-b, 3a-b 

and 4a-b).

Discussion

The results confirm our hypothesis that stochastic change other than a white noise process 

would lead to significant slopes when regressing community dissimilarity over increasing 

time lags. Collins et al. (2000) also presented simulated stochastic data and concluded that 

the resulting slope would be non-significant (Collins et al. 2000, Fig. 4). Their trajectories 

through time, however, were constructed in a different way, randomly choosing the 

abundance for each species at each point in time. For natural populations this rarely seems 

to be the case as has been shown by Inchausti and Halley (2002). The Markov chains of 

abundance of “stochastic species” used in our study represent a more realistic realisation of 

the time series of animal populations that have neither a stable mean (“constant species”) 

nor tend to approach an attractor of high or low abundance (“directional species”) but are 

governed only by random fluctuations (Williams et al. 2002). Consequentially the 

significance level of the slope does not allow the discrimination between communities with 

directional and stochastic change. Both processes—directional change of constituent 
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species and stochastic change according to a Markov process—lead to directional changes 

in species composition and these are identified as such by TLA even when the changes 

between sampling dates are very small. Applied to real community data, TLA will yield 

significant slopes for communities characterised by directional and stochastic dynamics, 

and will discriminate them from the communities that are almost entirely composed of 

species with constant population sizes (Figs. 2 and 3) and communities whose species 

abundances are governed by a white noise process, such as in the simulations of stochastic 

dynamics by Collins et al. (2000). 

Since significance will be achieved in almost any case, the slope itself remains as the most 

important measure to judge the dynamic of a community undergoing changes in species 

composition. When temporal variability is low, the slope rarely exceeds values of 0.05; in 

the communities composed of constant and stochastic species it even remains below 0.02. 

The maximum values attained for higher temporal variability fall between 0.15 and 0.25 

(Fig. 2a, 3a, 4a); only community stoch75dir25 yielded a slope even larger than 0.25 (Fig. 

4a). The range of slopes observed in the simulations correspond quite well to the empirical 

Hellinger-distance based TLA slopes of bird communities (Kampichler et al., in 

preparation). Bird communities from pristine ecosystems have been described as being 

remarkably stable (primeval temperate forests: Enemar et al. (2004); Wesołowski et al. 

(2010); Scandinavian alpine vegetation: Svensson (2006)). Their slopes range from 0.02 to 

0.04 which would be consistent with the assumption that these communities are mainly 

composed of a mixture of constant species and stochastic or directional species with low 

temporal variability. Slopes from successional forests (deciduous forest on abandoned 

fields: Kendeigh (1982); spruce regrowth after clearcutting: Hall (1984)) with a 
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considerable number of directional bird species (early species that later become locally 

extinct, species that enter the community later and continually increase their abundance) 

show slopes steeper than 0.1. A closer interpretation of the slopes seems to be hampered by 

the lack of a monotonous relationship between temporal variability and slope, as shown by 

the undulating curves in Figs. 3b and 4b. This is, however, due to the fact that in this 

simulation the directional species continue to increase or decrease their abundance 

throughout the entire time series which might be the case in short time series but cannot be 

assumed to be very realistic for long real-world time series. At high levels of temporal 

variability the decreasing directional species very rapidly become extinct while the 

remaining species continue increasing; relative abundance patterns change only slightly for 

the rest of the time series and thus lead to a lower TLA slope.

A more serious complication is that longer time series yield lower slopes than shorter ones, 

particularly when temporal variability is high (Fig. 2b, 3b, 4b), although the generation 

process of the time series of the constituent species is identical. To explore this hitherto 

unreported behaviour of TLA we simulated another 6000 communities—2000 each for the 

compositions const50stoch50, const50dir50 and stoch50dir50—for time series lengths 

(TSL) increasing from 10 to 200 in steps of 10 (ten replicates for each TSL, temporal 

variability set at v = 0.1) and regressed their slopes on TSL. TLA slopes vary considerably 

with the TSL; their relationship is quite complicated and cannot be approximated by a 

linear model but only with a segmented regression approach (Muggeo 2003), fitting 

separate line segments to different TSL intervals (Fig. 5a, 5c, 5e). Standardising TSL and 

thus regressing Hellinger distance on sqrt(lag)/max(sqrt(lag)) eliminates much of the 

nonlinearity of the relationship between slope and TSL (no segmented regression could be 
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fitted). On the one hand, this would permit the direct comparison of community data with 

different TSL; on the other hand, comparability with conventional TLA studies becomes 

lost due to the changed slope (compare the slopes on the y-axes of Fig. 5a, c and e with 

Fig. 5b, d and f). Consequentially, caution has to be exercised when TLA is used for the 

comparison of communities where time series length differs.

There are a number of alternatives to distance-based time lag analysis, such as redundancy 

analysis based on principal coordinates of neighbourhood matrices (Borcard et al. 2004) or 

asymmetric eigenvector maps (Blanchet et al. 2011). These methods were developed for 

the analysis of spatial patterns but can easily be adopted for time series analysis (Angeler 

et al. 2009). These direct canonical ordination approaches conserve the taxonomic identity 

of species during the calculation of distance metrics and allow identification of the species’ 

contributions to the patterns of temporal change. Thus it has been argued that they are 

superior to distance based methods (Angeler et al. 2009). We suspect that distance and 

ordination methods do not exclude each other but mutually complement the other. The 

merits of TLA compared to these powerful methods are its computational ease, its easy 

comprehensibility for an audience not experienced in interpreting ordination results, and 

the possibility of characterising and comparing the temporal dynamics of large numbers of 

communities with a single measure (the slope along with its significance level) without 

being drowned in masses of detailed information. We thus feel that further methodological 

improvements of TLA are desirable and necessary.
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Figure captions

Fig. 1. Sample time series of constant (A), stochastic (B) and directional (C) species with 

varying temporal variability, characterised by the scaling factor v. For ease of comparison 

all sample time series share the same initial value N0 = 50. The scaling factor v used for 

constructing the time series ranges from 0.001 to 0.5 (see text for details). Note the 

different scaling of y-axes.

Fig. 2. Time lag analysis of simulated communities composed of constant and stochastic 

species in time series of a, c) length 20 and b, d) length 100 with different temporal 

variability, determined by the scaling factor v used in the generation of the species time 

series (see text for description). Reported are a, b) the slopes of the regression lines of 

Hellinger distance on square root of time lag and c, d) the error probability, P, as 

determined by a Monte Carlo permutation procedure.

Fig. 3. Time lag analysis of simulated communities composed of constant and directional 

species in time series of a, c) length 20 and b, d) length 100 with different temporal 

variability, determined by the scaling factor v used in the generation of the species time 

series (see text for description). Reported are a, b) the slopes of the regression lines of 

Hellinger distance on the square root of time lag and c, d) the error probability, P, as 

determined by a Monte Carlo permutation procedure.

Fig. 4. Time lag analysis of simulated communities composed of stochastic and directional 

species in time series of a, c) length 20 and b, d) length 100 with different temporal 
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variability, determined by the scaling factor v used in the generation of the species time 

series (see text for description). Reported are a, b) the slopes of the regression lines of 

Hellinger distance on the square root of time lag and c, d) the error probability, P, as 

determined by a Monte Carlo permutation procedure.

Fig. 5. Relationship between TLA slope for different time series lengths for communities 

composed of equal proportions of a, b) constant and stochastic species , c, d) directional 

and stochastic species, and e, f) constant and directional species (E, F). The scaling factor v 

used for determining temporal variability in the generation of the time series was set at 0.1 

(see text for description). Panels on the left (a, c, e) are based on conventional TLA, panels 

on the right (b, d, f) are based on TLA with Hellinger distance regressed on 

sqrt(lag)/max(sqrt(lag)) instead on sqrt(lag). Break-points and slopes in panels a), c) and e) 

were determined by segmented regression (Muggeo 2003) using the package segmented 

(Muggeo 2008) for the R language and environment for statistical computing (R 

Development Core Team 2010). Regression lines in panels b), d) and f) are not significant 

(P > 0.05), significant at P < 0.01 and significant at P < 0.001, respectively.
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Evaluation of distance measures for time lag analysis

To illustrate the behaviour of time lag analysis (TLA) using different distance measures, we created nine 

simple artificial community datasets, each consisting of a time-series with length 10 on 10 (poor) or 20 (rich) 

species, respectively (Table S1). Datasets A and B are composed of species with increasing abundance (in A, 

linearly; in B, exponentially) but without changes in relative abundance patterns. In datasets C and D, one 

half of the species increases, the other half decreases (in C, linearly; in D, exponentially). Dataset E consists 

of four increasing and four decreasing species with low abundance and two highly abundant species that 

fluctuate randomly around a stable mean. 

Table S1. Nine artificial datasets for the evaluation of the characteristics of TLA with different 
distance measures. Each dataset consists of a time-series of 10 observations on 10 (A-poor, B-
poor, C-poor, D-poor, E) or 20 species (A-rich, B-rich, C-rich, D-rich), respectively. Column 
Time shows the abundance vector for each species within a given dataset. For example, dataset 
A-poor consists of 10 species, each of them increases in time from 1 to 10 individuals; dataset D-
rich consists of 20 species, 10 of them increase from 1 to 512, 10 decrease from 512 to 1. 

Time

Dataset Species 1 2 3 4 5 6 7 8 9 10

A-poor 1-10 1 2 3 4 5 6 7 8 9 10

A-rich 1-20 1 2 3 4 5 6 7 8 9 10

B-poor 1-10 1 2 4 8 16 32 64 128 256 512

B-rich 1-20 1 2 4 8 16 32 64 128 256 512

C-poor 1-5 1 2 3 4 5 6 7 8 9 10

6-10 10 9 8 7 6 5 4 3 2 1

C-rich 1-10 1 2 3 4 5 6 7 8 9 10

11-20 10 9 8 7 6 5 4 3 2 1

D-poor 1-5 1 2 4 8 16 32 64 128 256 512

6-10 512 256 128 64 32 16 8 4 2 1

D-rich 1-10 1 2 4 8 16 32 64 128 256 512

11-20 512 256 128 64 32 16 8 4 2 1

E 1-4 1 2 4 8 16 32 64 128 256 512

5-8 512 256 128 64 32 16 8 4 2 1

9 47212 47513 51414 58865 51192 39076 48365 51522 46215 55409

10 48836 52204 50082 48589 58390 46327 48560 43324 42555 52100

We calculated TLA using five different distance measures:



1. Euclidean distance based on absolute abundances (EDabs)

                                                           EDabs=∑
i=1

S

 N ij−N ik 2 (1)

where Nij and Nik represent the abundance of species i in years j and k, and S is the number of species 

in the community.

2. Euclidean distance based on relative abundances (EDrel)

Here, before equation (1) is applied, the data are transformed according to

                                                                   
N ij '=

N ij

∑
i=1

S

N ij

(2)

where Nij is the total of individuals in year j across all species.

3. Hellinger distance (HD)

HD is Euclidean distance based on Hellinger-transformed abundance data (Legendre and Gallagher 

2001). Thus, before applying equation (1), the data are transformed according to

                                                                
N ij '=

N ij

∑
i=1

S

N ij

(3)

which is simply the square root of the relative abundance and thus assigns more weight to the rare 

species in the community.

4. Chord distance (CD)

CD is the Euclidean distance after scaling the time vectors to length 1 (Legendre and Gallagher 

2001). After normalization, the Euclidean distance calculated between two steps in the time series is 

equivalent to the length of a chord joining two points within a segment of a hypersphere of radius 1. 

Before applying equation (1), the data are transformed according to

                                                                
N ij '=

N ij

∑
i=1

S

N ij
2

(4)

5. Bray-Curtis dissimilarity (B-C)

The distances described above can all be obtained by transforming the species abundance data 

followed by computation of Euclidean distances between the transformed data. B-C cannot be 

calculated in that way. Moreover, it is not a distance measure sensu strictu since it does not match the 

triangle inequality axiom which demands that D(a,b) + D(b,c)  D(a,c), where D is the distance 

between two objects a and b (Legendre and Legendre 1998). However, it is very popular and widely-

used among ecologists. It is calculated according to



                                                      B-C=1−

2∗∑
i= 1

S

min  N ij ,N ik 

∑
i=1

S

N ij∑
i=1

S

N ik

(5)

where min(Nij, Nik) is the lower abundance of species i in the years j and k.

The performance all distance measures was evaluated with respect to (1) their response to abundance change 

without change in relative abundance by analysing datasets A and B; (2) differences in species richness by 

comparing the poor and rich versions of datasets A, B, C and D; and (3) their proneness to be affected by the 

dynamics of dominant species by analysing dataset E. 

TLA performed with EDrel, HD and CD did not indicate any change in datasets A and B where absolute 

abundance changed but relative abundances stayed constant. TLA based on EDabs and B-C, in contrast, 

yielded significant slopes and is not appropriate for separating the abundance and the compositional 

component of community change (Table S2). TLA with EDabs and EDrel were sensitive to species richness, 

misleadingly indicating a faster directional change for datasets A, B, C and D when species richness was 

increased from 10 to 20. In contrast, TLA based on HD, CD and B-C yielded identical slopes for the datasets 

C-poor and C-rich, as well as for D-poor and D-rich (Table S2). Only TLA based on HD detected a 

community change when directional change of rare species was masked by the random dynamic of a few 

abundant species (Table S2). Table S3 sums up the properties of the distance measures and should help 

decide which measure to use for a given question.

Table S2. Time lag analysis of artificial datasets (see text and Table S1 for description) using 
different distance measures. b, slope of the regression of distance on sqrt(time lag); p, 
significance of the slope as determined by a permutation test; R², coefficient of 
determination; n.s., p > 0.05; ***, p < 0.001.

Distance measure

ED (absolute  
abundance)

ED (relative  
abundance)

Hellinger  
distance

Chord distance
Bray-Curtis  
dissimilarity

Dataset b p R² b p R² b p R² b p R² b p R²

A-poor 11.76 *** 0.98 0.000 - - 0.000 - - 0.000 - - 0.324 *** 0.71

A-rich 16.63 *** 0.98 0.000 - - 0.000 - - 0.000 - - 0.324 *** 0.71

B-poor 498.2 *** 0.30 0.000 - - 0.000 - - 0.000 - - 0.386 *** 0.90

B-rich 704.5 *** 0.30 0.000 - - 0.000 - - 0.000 - - 0.386 *** 0.90

C-poor 11.76 *** 0.98 0.214 *** 0.98 0.365 *** 0.96 0.559 *** 0.98 0.338 *** 0.98

C-rich 16.63 *** 0.98 0.151 *** 0.98 0.365 *** 0.96 0.559 *** 0.98 0.338 *** 0.98

D-poor 517.0 *** 0.55 0.339 *** 0.77 0.676 *** 0.87 0.768 *** 0.71 0.386 *** 0.90

D-rich 731.1 *** 0.55 0.239 *** 0.77 0.676 *** 0.87 0.768 *** 0.71 0.386 *** 0.90

E -1193 n.s. 0.03 -0.005 n.s. 0.01 0.060 *** 0.81 -0.007 n.s. 0.01 -0.002 n.s. 0.00



Table S3. Synopsis of the properties of different distance measures for time lag analysis.

Distance measure
Sensitive to absolute 
abundance change

Sensitive to species 
richness

Sensitive to dominant 
species

ED (absolute abundance) yes yes yes

ED (relative abundance) no yes yes

Hellinger distance no no no

Chord distance no no yes

Bray-Curtis dissimilarity yes no yes
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