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Abstract

Mostly due to anthropogenic influences, moors in Central Europe are undergoing rapid succession. We tried to indicate
five degradation stages of a peculiar lype of moors, so-called kettle-hole moors, which are located in the region of terminal
moraines left by the Pleistocene glaciation up until 10,000 years B.P, Using a database of more than 12,000 individuals of
carabid beetles belonging to more than 100 species sampled in 25 sites of various stages of degradation, we tried to construct
a bioindication system by the use of machine learning techniques. Model-tree induction yielded a classifier consisting of three
decision-trees which was moderately successful in classifying moors into the correct degradation stages by using information
on only nine species, thus reducing the biotic information to a necessary minimum and creating an extremely parsimonious
model. A translation of the decision-trees into fuzzy rule-based models increased bioindicatory efficiency: only 1 of the 10
unseen cases used for validation deviated more than one class from the correct degradation stage. At the moment, this model
reflects a static picture of kettle-hole moor degradation, confirming what can be said after macroscopic examination. Future
studies must show whether the more subtle dynamic aspects of moor degradation can also be indicated by carabid beetle
occurrence.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Kettle-hole moors are a peculiar type of wetland
ecosystems occurring mostly in the northemn hemi-
sphere. In their genesis, they follow moors formed by
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terrestrialisation processes of lakes, and thus are of
secondary origin (Succow and Joosten, 1988). They
developed from small oligotrophic lakes in deep holes,
so-called “Toteislocher” (German: ‘‘dead-ice holes”
or “kettle-holes”). These lakes generally were uncon-
nected and silted up in the course of 5000-6000 years
after the last ice-age, which ended approximately
10,000 years B.P. These moors are numerous in the
landscapes formed by terminal moraines (two to five
single moors per km?). They usually cover an area
of 10~50ha and have a depth of 5-15m (Géttlich,
1990; Succow and Joosten, 1988). Kettle-hole moors
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resemble raised bogs regarding the low conductivity
of moor water and the vegetation type, but, in contrast,
are supplied mainly by minerotrophic groundwater
and only additionally by rainwater, which flows down
steep slopes and is collected in the moor. The veg-
etation, consisting mostly of peat moss (Sphagnum)
and sedges, grows and not only raises the surface of
the moor but also the water level of the former lake
which they developed from.

Mostly due to anthropogenic influences, primarily
lowering of the groundwater table, kettle-hole moors
have undergone rapid succession: grasses outcompete
peat mosses and lead to the formation of oligotrophic
fens, which are in the case of eutrophication them-
selves replaced by woods of pine, birch or alder. This
process is called moor degradation (Géttlich, 1990;
Succow and Joosten, 1988) although for a long time
no precise definition of what constitutes a degraded
oligotrophic moor has been provided. Here, we regard
“degradation of moors” as a non-reversible process in-
duced (natorally or through anthropogenic influence)
by external factors. This process concerns changes in
the water regime, microclimatic factors, physical and
chemical parameters of the soil, as well as the quan-
titative and qualitative composition of the phyto- and
Z0O0COoenoses.

Carabid beetles respond to changes in the abi-
otic conditions of moors in a very subtle way. If
the groundwater table sinks and the moor changes
to wet meadows, those species which are typical for
Sphagnum-dominated moors are replaced by those
typical for the replacement meadows (Frimbs, 1990).
A similar process can be observed if the moor is
replaced by woods (Platen, 1991). The degrada-
tion stages correspond to patterns of occurrence of
epedaphic arthropod predators and has been shown
by Platen (unpublished data) for carabid beetles and
spiders by use of ordination techniques. Although
particular stages of moor degradation can be charac-
terised by a specific assemblage of carabid beetles,
the high arthropod species richness and the complex
relationships prevailing from an ordination plot do
not permit an easy transformation into a simple and
practical bioindication system. Thus, we tried to break
down the biotic information into as parsimonious a
system as possible, leaving out all species that only
give superfluous information. This paper describes a
bioindicatory system based on techniques provided

by artificial-intelligence research, namely the au-
tomated construction of a decision-tree (Breiman
et al.,, 1984; Finlay and Dix, 1996). Decision-trees
(also called classification trees) explain the mem-
bership of objects in a class by repeatedly splitting
the data into homogeneous groups, using combina-
tions of explanatory variables that may be categorical
as well as numeric. The trees can be represented
graphically or can be expressed as a set of split-
ting rules. Techniques of decision-tree induction are
ideally suited for exploring data that exhibit strong
non-linearity or high-order interactions, but are only
slowly finding their way into the statistical tool-box
of ecologists. For example, DZeroski et al. (1997)
used decision-trees for biological classification of
British and Slovenian rivers, and De’ath and Fabricius
(2000) analysed abundance data of soft corals from
the Australian Central Great Barrier Reef. A special
1ssue of Ecological Modelling (vol. 146, issues 1-3)
is dedicated to the use of machine-learning methods
in ecological data analysis and modelling (Recknagel,
2001).

Fuzzy logic is a generalisation of Boolean logic; it
provides means for a number of operations with fuzzy
sets and can manage truth values between “completely
true” and “completely false” (Zimmermann, 1996). By
use of fuzzy logic, the discrete rules provided by a
decision-tree can be fuzzified and transformed into a
more realistic model, avoiding misclassifications re-
sulting from artificially sharp class boundaries. This
combination of rule-based models and fuzzy logic has
proven to be a promising approach to ecological mod-
elling, for example, in population ecology (Bock and
Salski, 1998), impact assessment (van der Werf and
Zimmer, 1998) or biodiversity research (Kampichler
et al., 2000). An overview of the various applications
of fuzzy logic in environmental modelling is available
in two special issues of Ecological Modelling (vol. 85,
issue 1, Fuzzy Logic in Ecological Modelling; vol. 90,
issue 2, Fuzzy Modelling in Ecology) (Li and Rykiel
Jr., 1996; Salski, 1996).

The aims of this paper are: (i) to construct a
decision-tree out of a comprehensive database on cara-
bid beetles from kettle-hole moors in north-eastern
Germany; (ii) to transform the tree into a fuzzy
rule-based model; and (jii) to discuss the validity
of this methodology for approaching a bioindicator
system for degrading moors.
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2. Material and methods

2.1. Data

Data were gathered by pitfall trapping in 14
kettle-hole moors situated in north-eastern Germany
in a total of 25 sampling plots. Each of the plots,
which cover areas between 0.2 and 2 ha, was assigned
to a defined degradation stage for kettle-hole moors.
Generally, kettle-hole moor degradation is caused by
lowering of the groundwater table and the subsequent
contact of the peat with oxygen leading to peat min-
eralisation (Succow and Joosten, 1988). This process
can be enhanced by human activity (e.g. drainage,
deposition of nutrients), but can also occur through
natural succession when the peat cover reaches its
maximum capacity in establishing a high groundwa-
ter table by capillary power (=10 m thickness). Moor
degradation is characterised by directional changes
of vegetation and physicochemical properties which
allows for the assignment of kettle-hole moors to one
of six degradation stages:

e Degradation stage 0: The vegetation of a kettle-hole
moor is in an original state and, under minimal hu-
man influence, is dominated by Sphagnum mosses.
The moor is characterised by an accumulation of
peat. Its microclimate is characterised by large daily
and annual temperature amplitudes of up to 40 °C,
which is considerably larger than in other Central
European lowland ecosystems. Ground frost can oc-
cur even in cool mid-summer nights as a conse-
quence of the low heat capacity of the peat and heat
loss via outgoing long-wave radiation. The water
table is close to the surface throughout the year and
shows only little oscillation. The pH ranges from
2.5 to 4. Perennial plants, grasses, shrubs, and trees
are rare and have low cover values. This degradation
stage is described for completeness only; it, how-
ever, houses only few carabid beetle species and
will not be included in this study.

e Degradation stage I: This stage is characterised
by no or only minute biomass accumulation and
the growth of the moor is restricted to small areas.
Though one cannot speak of real degradation in this
state, it marks the transition from an intact to a de-
graded moor. The vegetation changes slightly and
grassy and shrubby patches begin to appear.

e Degradation stage 2: The changes in the water
regime are thorough: the water table has fallen be-
yond the surface, and annual oscillations with an
amplitude of up to several decimetres can be ob-
served. Due to released nutrients, grasses, shrubs,
and trees begin to grow and restrict open areas of
water and areas dominated by peat moss. These
changes of vegetation are accompanied by an in-
crease in pH, electric conductivity and concentra-
tion of nutrients, a development which characterises
the further degradation process. Parallel to these
changes, the mineralisation of peat also progresses.

e Degradation stage 3: The ongoing changes in mi-
croclimate (less fluctuating conditions) and water
regime together with the large release of nutrients
keep the viscious circle of moor destruction going
and lead to the replacement of shrubs by trees. They
can form sparse oligotrophic forests and are often
composed of pine and birch, followed by alder. Al-
ternatively, in this stage, reeds may also become
established.

e Degradation stage 4: Whereas the original moor
housed an unmistakable and characteristic vege-
tation, the possible pathways for the development
of later degradation stages become increasingly di-
verse and depend on a number of various factors,
as, for example, human management measures
and colonisation by fauna and flora from adjacent
ecosystems. Either forestation takes over and wet
woodlands are replaced by deciduous forests com-
posed of ashes and elms or the moors develop into
grassland systems dominated by sedges, rushes and
reeds. All moors of this stage, however, are char-
acterised by high pH, electric conductivity and nu-
trient concentrations and by the rapid progression
of peat mineralisation.

o Degradation stage 5: Mineralisation has destroyed
the peat in the uppermost 50cm of the soil. The
highly diverse types of vegetation possible in this
latest stage of degradation are dominated by plants
able to reach the groundwater table to a depth of
several meters. The pH is close to 7, the nutrient load
of the soil is approximately an order of magnitude
higher than in the earliest stages of degradation.

In each of the 25 study plots, six pitfall traps ar-

ranged in a transect of 12m length were maintained
for one vegetation period (April-October) between
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1992 and 1998. The traps had a diameter of 7.5cm
and were filled with 4% formaldehyde as a killing and
preservation fluid. The contents of the traps were emp-
tied biweekly and the solution changed. The sampling
yielding a total of 12,620 individuals of carabid bee-
tles belonging to 117 species (a list of all encountered
species, their numbers and ecological characteris-
tics are provided at the URL: http://www.christian-
kampichler.net/ecolind.html). Numbers presented in
this paper always refer to the total number of indi-
viduals of a species trapped per plot and in the entire
trapping period (this is, one vegetation period).

2.2. Decision-tree induction by machine learning

Decision-trees provide a means for representing a
set of rules that are used to predict the class of a case
(thus, we will use the terms decision-tree induction and
rule-induction synonymously). For example, Fig. la
shows a decision-tree for selecting all red squares. In
examining a case, the tree is “run’ down from its up-
permost node. The case is passed down node by node
until eventually it reaches an endpoint of a branch, a
so-called “leaf”’, which classifies the case. We aimed
towards developing a decision-tree that is able to as-
sign kettle-hole moors (each moor is a case) to a class
(this is, a degradation stage) from its attribute val-
ues (this is, the numbers of individuals of each cara-
bid beetle species found in a moor). A hypothetical
decision-tree for that task could appear as shown in
Fig. 1b. The tree can also be expressed as a set of three
rules: Rule 1—1IF species A is absent AND IF species
B appears with >100 individuals THEN moor belongs

®) [‘shape = square 7

YES NO

colour = red

accept refect

(b)

reject

to class X; Rule 2—IF species A is absent AND IF
species B appears with <100 individuals THEN moor
belongs to class Y; Rule 3—IF species A is present
THEN moor belongs to class Z.

Briefly, a tree is grown by splitting the data into two
mutually exclusive groups, each of which is as homo-
geneous as possible. This process is iterated separately
for each group. For numeric explanatory variables (for
example, number of individuals of a certain species),
splits are defined by rank, that is, by values greater or
less than some chosen value. Thus, for n unique values
of a variable there are n — 1 possible splits. After split-
ting the data in all possible ways (i.e. splitting 3" (n; —
1) times, where »; is the number of possible splits
for the explanatory variable (i), the split is chosen
that maximises the homogeneity of the two resulting
groups. Homogeneity of groups can be measured by
various measures (Breiman et al., 1984), among them
the information index —3 (plog(p)), where p is the
proportion of cases of each class in a group (in ecology,
this measure is known as the Shannon—Wiener index
of diversity). For example, when a group only consists
of cases of a single class, the information index equals
—(11n(1)) = 0, denoting maximum homogeneity.

Artificial intelligence research has developed a
number of algorithms that automatically construct
decision-trees out of a given number of cases, e.g.
ID3 (Quinlan, 1979) or CN2 (Clark and Niblett,
1989). We analysed the matrices of 25 sites x 117
species (Carabidae) using the programme See5 (dis-
tributed by © RULEQUEST RESEARCH, URL:
http://www.rulequest.com). See5 expresses the clas-
sifier in the form of a decision-tree or as a set of

[ species A = absent J

YES NO
[ species B> 100 ] class Z
YES NO
class X class Y

Fig. 1. Two simple hypothetical decision-trees.
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IF-THEN rules. It offers a number of features that are
described by Rulequest Research (2000). We made
use of some of these features:

o Cross-validation: A classifier is constructed from
the cases in a data file (training data). Its predic-
tive accuracy can be subsequently estimated from
its performance on new cases in a test file (predic-
tive validation sensu Rykiel Jr., 1996). In an n-fold
cross-validation the cases in the data file are divided
into n blocks of roughly the same size and class dis-
tribution. For each block in turn, a classifier is con-
structed from the cases in the remaining blocks and
tested on the cases in the hold-out block. The error
rate of a classifier produced from all the cases is es-
timated as the ratio of the total number of errors in
the hold-out cases to the total number of cases. We
applied a five-told cross-validation, that is, the cara-
bid beetle data were randomly divided into blocks
of five moors. The cross-validation approach aids in
reducing the problem associated with obtaining rep-
resentative samples and provides a greater sample
size for model construction and validation (Olden
and Jackson, 2000).

e Boosting: By boosting, several classifiers are gen-
erated rather than just one (Freund and Schapire,
1997, 1999). A single classifier will usually make
mistakes on some cases in the data. By construct-
ing a second classifier, more attention can be paid
to these cases in an attempt to classify them cor-
rectly, and the second classifier will be different
from the first. It also will make errors on some
cases, and these become the focus of attention dur-
ing construction of a third classifier, and so on for
a pre-determined number of iterations. When a new
case is to be classified, each classifier votes for the
class it predicts, and the votes are counted to de-
termine the final class. We constructed three classi-
fiers and used the median of the three votes as the
eventual prediction.

2.3. Transformation into the fuzzy model

A decision-tree as in Fig. 1b is a classifier with dis-
crete decision criteria. For example, a moor with 50
individuals of species A and with 101 individuals of
species B in a sample of a defined size would be clas-
sified as belonging to class X. If only one specimen
of species B was missed, the moor would be assigned

to another class. ¥, despite the obvious similarity be-
tween the two cases. Where ecologists have previously
drawn this kind of artificially sharp distinction, they
can now draw more realistic boundaries by means of
fuzzy sets. In classical (“crisp”) set theory, there are
only two possibilities; either an object is member of a
set or is not; thus, the only possible membership val-
ues are 0 and 1. The central idea in fuzzy set theory
is that members of a set may have only partial mem-
bership, which consequently may possess all possible
values between 0 and 1. The closer the membership of
an element is to 1, the more it belongs to the set; the
closer the membership of an element is to 0, the less it
belongs to the set. Let, for example, the possible num-
bers of individuals of a species in a defined sample lie
within 0 and 100 (Fig. 2). Sharp boundaries between
sets necessarily mean, that counts that differ as close
as 1 may be assigned to different sets (here, 50 and
51). Through fuzzy sets, a region of overlap may be
defined; numbers around 50 belong to both sets, the
respective membership values depending on whether
the observed numbers are lower or larger than 50.
The decision-trees yielded by automated tree in-
duction were broken down into a set of rules by
representing each possible path through the trees by
a rule. Subsequently, sharp boundaries (e.g. a rule
including the antecedent IF species A < n versus a
rule including IF species A > n, where n defines a
split in the tree) were translated into fuzzy boundaries
(e.g. into rules with the antecedents IF species A is
rare versus IF species A is frequent with an over-
lapping zone between the sets “rare” and “frequent”

crisp sets fuzzy sets

-y

"rare" “frequent” "rare” "frequent”

Membership

0 B D PP O 0

No of individuals No of individuals

Fig. 2. Example for discrete and fuzzy sets. Membership of the
discrete sets “rare” (dotted line) and “frequent™ (solid line) have
a sharp upper and lower boarder, respectively (left), while mem-
bership of the fuzzy set “rare” (dotted line) and “frequent” (solid
line) increase and decrease gradually, respectively (vight).
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around #) in a manner similar to that demonstrated in
Fig. 2. The amount of overlap chosen was based on
biological plausibility and was open to modification
while adjusting the model. For development of the
fuzzy model, we chose only 15 of the plots according
to a stratified random drawing from the full list of
plots in order to ensure an equal representation of
each degradation stage in the subset; we used the ten
plots not chosen for development as unseen cases for
validation of the model (Rykiel Jr., 1996).

(A)

In a process consisting of fuzzification (transla-
tion of observed numbers of individuals into mem-
bership values in the fuzzy sets), fuzzy inference
(calculation of the membership of the moor in the
degradation classes) and defuzzification (transforma-
tion of the fuzzy result into a discrete output; here,
a degradation class), the fuzzy model was used for
assigning each moor into one of the five degradation
classes (see Bothe (1995) or Zimmermann (1996) for
an introduction to fuzzy models or visit additional

N
Agonum Agonum
afum afrum
=0 >0

2N

Amara Amara
lunicollis  lunicollis
<=1 > 1
¥
Plerostichus  Pterostichus
diligens diligans
<=25 »25

¥

Plapstichus  Plerostichus
diligens

diligans
<=143

¥ ™
Calathus Calathus
microplerus  microplarus
=0 >0

=143

|
b B B M

Stage of Dagradation

(5]

(B) (©) N
Chlaenius Chlaenius Amara Amara
nigacormis  pigricornis consularis  consularis

=0 >0 =0 >0
™ »
Agorum  Agonum Synuchus  Synuchus
alrum alrum vivalis vivalis
=0 =0 =0 >0
Nt P
Plerostichus  Plerostichus Chlaenius Chlaenius
diligens diigens nigricornis nigricornis
<= 25 >25 »0 =
e N
Plerostichus  Flemstichus Calathus Calathus
diligens difigens microplerus  micropterus
<=143 > 143 =0 >0
P v o
Bradycellus  Bradycelius Oxypselaphus Oxypselaphus
harpalinus  harmalinus obscurus obscuus
= i) >0 <=7 >7
¥ Y
5]

Stage of Degradation

Y
[ B B M
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B

Fig. 3. Main decision-tree (a) and two additional trees derived by boosting (b and ¢) constructed by See5 based on 117 species of carabid

beetles from 25 plots in kettle-hole moors in north-eastern Germany. Plots are assigned to five degradation stages from 1 (le

to 5 (most degraded).

ast degraded)
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material to this chapter at the URL.: http://www.christian-
kampichler.net/ecolind.html).

3. Results

The three classifiers created by decision-tree in-
duction with See3 included only 9 out of the total
of 117 carabid beetle species for the classification of
kettle-hole moors into five degradation stages (Fig. 3).
For example, a sample without Agonium afrum, Amara
lunicollis, Amara consularis, Calathus micropterus,
Chlaenius nigricornis and Synuchus vivalis, with one
individual of Bradycellus harpalinus, 68 individuals
of Pterostichus diligens and 99 of Oxypselaphus ob-
scurus is classified to stage 2 by the main tree (Fig. 3a)
and to stages 2 and 3, respectively, by the boosting
trees (Fig. 3b and c¢); the median is 2 and the sample
is eventually classified to stage 2.

Even the main decision-tree alone (without im-
provement by boosting) (Fig. 3a) classified 23 of the
25 plots correctly; by boosting, the classification ef-
ficiency increased to 100% when validated with the
data used for decision-tree induction (Table 1). The
five-fold cross-validation showed moderate power of
the model (Table 2). Degradation stages 1 and 2 were
properly classified with some misclassifications into
adjacent classes (one sample from stage 2, however,

Table 1
Validation of decision-trees by “training data” (the data used for
validation were the same used for decision-tree induction)

Tree Observed stage Predicted stage
1 23 45

Main tree only 1 5

2 5

3 1 4

4 1 4

5 5
Main tree and boosting 1 5

2 3

3 5

4 5

5 3

Samples from moors with a known degradation stage were classi-
fied (based on carabid beetle occurrence) by the main decision-tree
alone (upper half of table) and by including two further trees de-
rived by boosting (lower half of table).

Table 2

Five-fold cross-validation of decision-trees (the data used for val-
idation were withheld data and were not used for decision-tree
induction, see Section 2 for a more detailed description)

Observed stage Predicted stage

1 2 3 4 5
4
{
l

1

B —
—_
D =

1
3 i

— o 1D
o

5

Samples from moors with a known degradation stage were classi-
fied (based on carabid beetle occurrence) by the main decision-tree
and by two further trees derived by boosting.

classified to stage 5). Samples from stages 3-5 were
less efficiently classified, even with a number of
misclassifications into distant classes.

Fig. 4 shows the fuzzy model derived from the main
decision-tree. A set of 24 rules relates five species of
carabid beetles to a degradation stage (Appendices
A-C present the rules of all three fuzzy models—
corresponding to the three decision-trees—and the
exact measures of the fuzzy sets and are available
at the URL: http://www.christian-kampichler.net/
ecolind.html). In analogy to the decision-trees, each
fuzzy model has a vote for the class it predicts; as
above, the degradation stage is determined by taking
the median of these votes. For example, a sample
without A. afrum, A. consularis, A. lunicollis, B.
harpalinus, C. micropterus, C. nigricornis and S.
vivalis, with 3 individuals of O. obscurus and 27 in-
dividuals of P, diligens yields the following results:
the defuzzified output of 1.38 in the fuzzy model de-
rived from the main decision-tree is a vote for class
1; the models derived from the two additional trees
(boosting) vote for class 2 (output 2.12) and class 4
(output 4.01), respectively; the eventual prediction of
the combined model is class 2 (which is the correct
class).

As with the decision-trees, the models were very ef-
ficient when validated with the training data; no sam-
ple was misclassified (Table 3). With unseen cases as
test data the model performed less efficiently and mis-
classified four of ten samples; however, only one of
the samples deviated by more than one class from the
correct degradation stage (Table 3).
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Agonum afrum

0 SIS e ]

0123435

Amara lunicollis
1 ———

0

01 2 8 45

Pterostichus diligens

Rule node |¢-———

y

Calathus micropterus

0
0 50100 200

0
1 2

State of degradation

3

012345

4 5

Fig. 4. Fuzzy model derived from the main decision-tree (Fig. 3a). Each variable (carabid beetle species) in the tree is translated into
fuzzy sets (for splits in the tree based on quantitative data) or crisp sets (for splits based on presence—absence data); a rule node relates

these variables to an output class (degradation stage).

Table 3

Validation of the fuzzy models derived from decision-trees by
use of “training data” (same data used for model adjustment and
validation, upper haif of table) and test data (withheld data not
used for model adjustment, lower half of table)

Data Observed stage  Predicted stage

1 2 3 4 5

Training data 1 3

2 3

3 3

4 3

5 3
Test data 1 1 1

2 1 1

3 2

4 2

5 2

Samples from moors with a known degradation stage were clas-
sified by the fuzzy model based on carabid beetle occurrence.

4. Discussion

Decision-tree induction is an important ex-
ploratory instrument in identifying data structure and

organisation of large data sets. It does not aim for
the substitution of ecological expertise by an algo-
rithmic procedure but rather for assisting researchers
in finding a path through puzzling data labyrinths.
The models in this paper do not contradict what was
expected by us; however, the species we a priori sus-
pected of bearing the largest indicatory power were
not included in the decision-trees. DZeroski et al.
(1997) obtained similar results when they used CN2
(a program for decision-tree induction like See5)
for biological classification of British and Slovenian
rivers: some rules simply confirmed expert knowl-
edge, but others revealed new aspects of the biology
of the taxon studied. We agree with D¥eroski et al.
(1997) that the use of rule-induction can improve eco-
logical knowledge and that they are useful tools for
ecological modelling, especially in early exploratory
stages of data analysis. A particular advantage of
decision-trees or rule-induction is the speed by which
a starting point for further analysis and interpreta-
tion can be gained. Another advantage of trees is
their simplicity: the splits of a tree are much easier
to understand and to interpret than standard linear

e
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statistical models such as ANOVA, particularly when
there are high-order interactions between explanatory
variables (De’ath and Fabricius, 2000).

Nevertheless, several points of potential criticism
remain which should be discussed. One might be con-
fused by species that define splits by the presence of
a few individuals only, as, for example, A. lunicollis
in the main decision-tree (Fig. 3a), The model is ro-
bust against the random occurrence of more individ-
uals than allowed by the splitting rule and a possible
misclassification (e.g. the random occurrence of two
or more individuals of A. lunicollis despite the sample
stems from a moor of degradation stages 1-4) due
the inclusion of the boosting algorithm: there are more
than just one classifier and their final decision is the re-
sult of a voting process; even if one of the trees yields a
false prediction it can be corrected by the others. Addi-
tionally, the translation of the decision-trees into fuzzy
models decreases the risk of becoming “bullied” by a
few outliers if the regions of overlap between fuzzy
sets are adequately chosen. Thus, the combination of
boosting and the fuzzy approach has the potential of
buffering decision-trees against moderate irregulari-
ties in species occurrence and abundance. Many cara-
bid species exhibit high variability in abundance from
year to year (den Boer, 1968). However, these do
not pose a problem, since due to their low power for
class assignment, they do not become included into
the decision-trees. The data used in our analysis were
gathered over a period of 7 years, thus, the trees are not
biased towards the phenological peculiarities of a sin-
gle year. However, one should be cautious with model
generalisation when the data survey was only per-
formed during a short time period, particularly when
spatial synchrony of population development must be
expected as has been shown for a number of animals
(Bjgrnstad et al., 1999; Lundberg et al., 2000).

What can be done when taxonomically difficult
species (e.g. sibling species) are included in a tree?
Due to the time-saving capacity of decision-tree in-
duction such species simply need to be omitted from
the data base and a new classifier can be generated.
For bioindicational purposes, this procedure can be
iterated until a classifier—or set of classifiers if tree
induction includes boosting—is reached that satisfies
the requirements of easy species identification as well
as sufficient predictive potential. There is no single
correct decision-tree; several trees may guarantee

operative success, their specific shape being depen-
dent on the biological or taxonomical expertise of the
modeller. In the case of the three decision-trees de-
rived in this study, taxonomical skills are necessary for
its reasonable application. Some of the nine species
needed can be easily identified and distinguished
from similar species by an ecologist only moderately
familiar with carabid beetle taxonomy, e.g. P dili-
gens and C. nigricornis. Other species, however, are
taxonomically difficult. These are, for example, A.
afrum which is a sibling species to A. duftschmidi (see
Schmidt, 1994) and, moreover, is very difficult to sep-
arate from A. viduum; A. lunicollis and A. consularis
which—Ilike most species of the genus Amara—are
very difficult to separate from one another); this is
also true of the genus Calazhus and nearly all species
of the genus Bradycellus. The majority of species in
these genera can be only separated by preparation of
the genitalia. Thus, decision-trees might be helpful
in identifying data structures that have bioindicatory
power, but they do not necessarily substitute taxo-
nomical expertise (as was suspected by many of the
biclogists with whom we discussed the models).
How far can the results of this study fulfil the hope
of indicating kettle-hole moor degradation by carabid
beetle occurrence? The decision-trees yielded satis-
fying results for the classification of moors that only
showed little degradation (stages 1 and 2) (Table 2).
Although these stages are characterised by a very
specific assemblage of carabid beetle species, e.g.
Agonum gracile, A. hypocrita, Badister dilatatus,
Bembidion doris, B. humerale, Epaphius rivularis,
Patrobus assimilis and Pterostichus aterrimus, which
are typical for natural oligotrophic kettle-hole moors
(Barndt et al., 1991), these species do not appear in
the classifiers. Instead, stages of minute degradation
were recognised by the absence or low abundance
of species that are generally common in a variety of
moist habitats, e.g. P. diligens, C. nigricornis and O.
obscurus. This is quite in contrast to the way a zo-
ologist would judge the quality of a habitat, namely
by the occurrence of highly specialised stenotopic
species. However, (i) species with a restricted distri-
bution tend to be locally rare (Gaston, 1994) and thus
face a high risk of not being detected in a site where
they actually occur (McArdle, 1990), and (ii) species
which are restricted to isolated habitat patches show
an incidence resulting from a balance between local
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extinction and immigration (Hanski, 1999) and con-
sequently cannot be expected to occur in every site
suitable for their existence. The classifiers gained by
the decision-tree induction reflect the higher reliabil-
ity on the absence of common species that cannot
colonise special habitats than on the occurrence of
rare specialists. At first glance, this seems doubtful
since, generally, the absence of an attribute is not a
“positive” property of an object. However, the list
of carabid beetle species in the data set defines the
domain from which each moor can draw, this is, an
exhaustive set of species that actually occur. In this
case, even the absence of a species may be used for
its assignment to a certain degradation stage. The in-
clusion of negative properties in decision-trees is not
uncommeon due to the closed set of objects that are
classified (e.g. DZeroski et al.,, 1997).

In contrast to the well-indicated moors of stages
1 and 2, moors showing more dramatic degradation
(stages 3-5) accumulate widespread and common
species known from a range of grassland and for-
est habitats, leading to less efficient separation. For
example, C. micropterus and O. obscurus, occur
regularly in dry and moist woodlands, respectively
(Barndt et al., 1991). The translation into a fuzzy
model seemed to improve the classification efficiency
even for stages 4 and 5 (Table 3). However, due to
the relatively low number of test data available for
the validation of the fuzzy model we do not dare to
advocate a definitive judgement,

Nevertheless, even the sufficient classification of
moors into degradation stages yields just a static im-
pression of an essentially dynamic process, The aim
of developing an indicatory system for moor degra-
dation is to indicate subtle changes in the system that
can be recognised by the beetle species invading the
area and those going extinct, respectively, before the
ecosystem changes in the moor become macroscop-
ically evident. Perhaps, the arrangements of output
classes of the fuzzy model on an ordinal scale can give
indications in that direction. For example, output val-
ues of 3.3 or 3.7 could indicate a beginning or evident
shift, respectively, from degradation stage 3 to stage
4. Careful testing will be needed, however, to deter-
mine whether the degradation stages in their present
definition can satisfy these requirements and whether
carabid beetles are able to indicate such subtle shifts
with a reasonable amount of predictive power.

5. Conclusion

We believe to have shown that novel techniques
of decision-tree induction combined with the method-
ological approach of fuzzy control can be useful in-
struments for ecological modellers. Only 9 of the 117
carabid beetle species were sufficient for a moder-
ately efficient classification of moors into degradation
stages, thus reducing the biotic information to a nec-
essary minimum and creating an extremely parsimo-
nious model. At the moment, this model reflects only
a static picture of kettle-hole moor degradation and
merely confirms what can be said upon macroscopic
and physicochemical examination. Future studies must
show whether the dynamic aspects of moor degrada-
tion can also be indicated by carabid beetle occurrence.
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